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ABSTRACT

We determined that it is possible to automatically detect persuasion in conversations using three
traditional machine learning techniques, naive bayes, maximum entropy, and support vector
machine. These results are the first of their kind and serve as a baseline for all future work
in this field. The three techniques consistently outperformed the baseline F-score, but not at
a level that would be useful for real world applications. The corpus of data was comprised
of four types of negotiation transcripts, labeled according to a persuasion model developed by
James Cialdini. We discovered that the transcripts from the Davidian standoff in Waco, Texas
were significantly different from the rest of the corpus. We have included suggestions for future
work in the areas of data set improvements, feature set improvements, and additional research.
Advancements in this field will contribute to the Global War on Terror by alerting intelligence
analysts to enemy persuasion attempts and by enabling U.S. forces to conduct more effective
information and psychological operations using local persuasion models.
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CHAPTER 1:
Introduction

Nearly every person has an item in their house that is sitting in their closet collecting dust. This
item has only ever been outside the closet on the day it was brought home. For every person, it
is a different item. For some, it is a set of ugly dishes given to them by their grandmother, for
others a lifetime supply of the latest and greatest cleaning product on the infomercial circuit.
Regardless of the item, it was never really wanted in the first place, yet there it sits. How did
this happen? The answer is persuasion. Persuasion can do more than just get Americans to fill
their closets. It can convince people to plant bombs on Times Square or to crash a plane into
the Pentagon. Persuasion can take on many forms and those with knowledge and awareness of
these forms can sell a ketchup popsicle to a woman wearing white gloves, or even save the lives
of thousands of Americans.

1.1 Motivation
The motivation for this research stems from the following ideas expressed in Joint Vision 2020

[1].

Information, information processing, and communications networks are at the core
of every military activity.

Information superiority provides the joint force a competitive advantage only when
it is effectively translated into superior knowledge and decisions.

If it were possible to detect persuasion in conversation, troops on the front lines of our cur-
rent and future wars would have more information to contribute to their knowledge base and
from which to base decisions. They would have invaluable information, such as notifications
about enemies trying to influence the local populace, the target audience of these persuasion at-
tempts, and what persuasion model the enemy is using. Information of this type would result in
better intelligence targeting, more focused information operations, and application of localized
persuasion models to influence the local populace in support of U.S. interests.

1



1.2 Related Work
There exists previous work in related areas but very little work on actual persuasion detection.
One group of researchers investigated if it is possible to automatically determine from which
perspective an essay was written [2]. This research used a corpus of data from the “bitter-
lemons” Web site, and addressed the binary classification of perspectives between Israeli and
Palestinian authors. Another group of researchers examined the problem of sentiment detec-
tion [3]. They used consumer reviews in order to determine whether or not it is possible to
discriminate between different star ratings for a given review. The only work directly focused
on persuasion is a product of the Naval Postgraduate School [4]. Research was conducted to
evaluate the degree to which a persuasion model could be used in order to annotate a corpus of
data for machine learning experiments. This research used a persuasion model developed by
James Cialdini and resulted in the only known corpus of persuasion tagged data in existence.

1.3 Research Question
This thesis addresses the question, “Can we learn to identify persuasion as characterized by
Cialdini’s model using traditional machine learning techniques?” This research uses four differ-
ent feature sets and three different machine learning techniques in order to answer this question.
Additionally, this research explores the role of feature discrimination, types of segmentation,
and voting schemes.

1.4 Results
The results of this research allow us to answer our research question with a “yes.” However,
none of the methods used, neither separately nor combined, produced the type of results that
would allow us to consider this problem solved. This research produced some weak classifiers
and identified some candidate feature sets for future research in this field. One type of segmen-
tation failed to produce any learnable signal. The results of the weak classifiers were used in
conjunction with two different voting schemes that yielded mixed results.

1.5 Future Work
Future work in this area falls into three categories: data set improvements, feature set improve-
ments, and future research. Data set improvements could include producing more and larger
data sets annotated for belief, adding additional genres such as Web pages, blogs, and SMS
messages, and augmenting the current data set with additional information, such as distance
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from the previous persuasive post, correct speaker tags and dialogue act tags. Features set im-
provements should focus on combining high recall features with high precision features and
building topic models for persuasion. In order to solve this problem, future research is needed
to investigate segmentation schemes, effects of time and sequence, the utility of bagging, boost-
ing, and voting, the role of speaker type, and the impact of parts of speech and syntax.

1.6 Organization of Thesis
In order to investigate the research question, this thesis is organized as follows:

• Chapter 1 discusses the topic of persuasion and the motivation for techniques to automat-
ically detect persuasion in conversation.

• Chapter 2 discusses prior work relevant to the task of persuasion detection.

• Chapter 3 contains a description of the experimental design and the data set used in this
research.

• Chapter 4 contains the results of the experiments and analysis of the results.

• Chapter 5 contains concluding remarks and possible areas of future research.
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CHAPTER 2:
Prior and Related Work

2.1 Introduction
Learning to automatically identify persuasion requires us to define and understand what is meant
by “persuasion.” In this chapter, we present all concepts relevant to detecting persuasion in
conversation using machine learning techniques. First, we present the persuasion model used in
this research. From this foundation, we survey feature definitions, followed by an overview of
three machine learning classification techniques. Next, we discuss a suite of metrics needed to
evaluate our hypotheses. We conclude with a discussion of the software tools that enabled this
research.

2.2 Persuasion
Persuasion is an everyday social phenomenon. For persuasion to be present, one party must be
unwilling or unlikely to perform an act or to believe an idea unless they are influenced by an
outside force. This force can manifest in another person, an advertisement, or current social
norms and practices. One formal definition of persuasion by James Cialdini identifies six types
of persuasion: reciprocity, commitment and consistency, liking, authority, social proof, and
scarcity [5]. Since Cialdini’s model forms the foundation for this research, it is important to
have an understanding of what characterizes each type of persuasion.

2.2.1 Reciprocity
Reciprocity relies on a condition of indebtedness. According to the Cialdini persuasion model,
this behavior developed out of a need for society to advance. When two cultures meet, they
exchange ideas. The mechanism of reciprocity allows that exchange to continue. One well
known example of this principle is the Hari Krishna monks. These monks offer flowers to
people in public places. Despite the fact that this is a small gift, people will in turn give a dollar
or two back to the monks. Often, people will throw the flowers away and the monks simply
retrieve them from the garbage and repeat the process [5].

Reciprocity can take on another form in which the exchange is not a tangible item; instead the
exchange is an exchange of utility. The following is an example of this principle at work.
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A Boy Scout walks up to a man and asks him to buy a few tickets at a cost of
five dollars for their two hour talent show this coming Saturday. The man does not
like talent shows, nor is he willing to give up part of his Saturday to see a show
he does not like. He politely declines. The Boy Scout suggests that instead he
could show his support for the Boy Scouts by purchasing a few chocolate candy
bars for two dollars a bar. The man purchases the bar, despite the fact that he does
not like chocolate, but does like dollars. This exchange occurred because the man
had received a concession by the Boy Scout. Due to this concession, the man had
become indebted to the Boy Scout. The Boy Scout has readily supplied him with a
means to repay that indebtedness, purchasing a few candy bars. [5]

The common element in both reciprocity mechanisms is that one party becomes indebted to
another, and that debt must be repaid [5].

2.2.2 Commitment and Consistency
The second form of persuasion is commitment and consistency. If a person makes a commitment

to perform an act or to support an idea, then that person is obligated to fulfill that commitment.
The application of this type of persuasion usually involves the proposal of a deal [5]. For
example, if a total stranger says to another total stranger, “If I buy you lunch, will you give me a
ride home from work today.” If this offer is accepted and the first person buys the second person
lunch, there is now an outside source influencing the decision to drive the person home or not.
Again, it is possible to see that this behavior might have arisen out of a societal need to continue
the exchange of culture, ideas, and resources. Additionally, if the recipient of the lunch attempts
to dodge his commitment to provide a ride home, the person who should receive the ride can
now refer to the commitment that has already been made and that their lunch had already been
purchased. While providing a ride may still not seem attractive to the lunch recipient, the fact
that their is an existing commitment acts as an outside influence over their actions and decisions.

2.2.3 Liking
The third form of persuasion is liking. Liking means that people are influenced by things that
are similar to them or that bring them satisfaction [5]. An example of the first application is
commonly seen on television shows when a character is applying for a job. In these situations,
the character’s interview is not going well. Then, all of a sudden, the interviewer asks, “Where
are you from?” Inevitably, the interviewer and the interviewee are from the same neighborhood,
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attended the same high school, and had the same high school football coach. The course of the
interview has changed, but the person being interviewed has not. The only difference now is
that there is an outside influence affecting the interviewer’s decisions, in this case similar life
experiences.

The other form of liking involves behavior on the influencing party that brings about a sense
of satisfaction [5]. For example, a car salesman walks up to a customer looking at a modestly
priced sedan. The salesman says, “This car is not right for you. A classy gentleman such as
yourself should be looking at our line of luxury sedans.” A this point, the salesman has started
to build up the customer’s sense of satisfaction, and now the customer has an outside influence
affecting his decision.

2.2.4 Authority
The fourth type of persuasion mechanism is authority. The main idea behind this form of
persuasion is that people are influenced by the thoughts, words and actions of authority figures.
Authority can be embodied in an individual or an organization [5]. For example, a potential
customer at a car dealership is haggling with a salesman. The salesman tells the customer that
he is at the lowest price he is authorized to offer. He then informs the customer that he will
check with his boss, but that the answer will be the same. Two things may happen at this point.
The salesman returns and tells the customer that his boss confirmed that this is the lowest price
the dealership will offer, or the boss comes out and tells the customer himself. In either of these
two situations, the car price remains the same and the current deal proposal has not changed.
The only thing that has changed is the source of information. Regardless of how the customer
proceeds from this point in the negotiation, he is influenced by this outside source.

2.2.5 Social Proof
The fifth type of persuasion is social proof. This type of persuasion relies on societal norms. If
a person believes that societal norms apply to his current situation, then he should expect the
same outcome as everyone else. In addition, societal norms are used in this form of persuasion
to demonstrate how a person should act in the current situation, often referred to as the herd
mentality or peer pressure [5]. The legal profession is fond of this type of persuasion. Often, a
client will want to know the expected outcome of their case. Since there are many variables to
consider, there is no possible way that a lawyer can guarantee an outcome. However, he may
have several cases that are similar. The lawyer can then share the outcomes and circumstances
with his client. Once again, nothing has changed in the situation. The people involved, the
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laws, and the facts of the case all remain the same, but now an outside force is influencing the
client’s decisions. If the client believes that his case is similar, he is now more optimistic or
more pessimistic about the outcome of his own case.

Similarly, people are influenced by societal norms in deciding how to behave or what to value
[5]. A classic example from the advertising world is the Gatorade ad campaign featuring
Michael Jordan and the slogan “Be like Mike.” The idea behind this campaign is that Gatorade
makes Michael Jordan perform at a high level on the basketball court. So, if an average or
below average athlete wants to perform at a high level, they should adopt the same behavior
as Michael Jordan and drink Gatorade, too. Gatorade has used this principle to influence cus-
tomers to by their product. The truth of the matter is that there are many other components of
his life that made Michael Jordan a great basketball player, but Gatorade has given the illusion
that the norm is if a person drinks their product, they will perform better athletically.

2.2.6 Scarcity
The final form of persuasion is scarcity. The persuasion principle of scarcity is dependent on
time. The person being influenced must believe that if they do not act in a certain amount of
time they will miss an valuable opportunity [5]. This technique is widely used in infomercials.
The infomercial presents a product and explains all the benefits of owning this product. The last
thing the host does is tell the audience the price. The audience applauds with approval since
the benefits of the product outweigh the monetary cost. Yet, the host is not finished. He has
one more important act to perform. He tells that audience that if they act now, they will also
receive an additional bonus. However, it is only available to the customers during the rest of the
infomercial. If the customer waits until tomorrow, they will not receive the free bonus. Nothing
has changed. The product is still the same, but now the customer is faced with the thought of
losing the bonus. It does not matter what the bonus is only that they will not receive it if they
wait. The customer has an outside influence affecting their decision making.

2.3 Features
Above, we discussed models of persuasion. But, what characteristics of a conversation are
used to decide if persuasion is present? In machine learning, these characteristics are called
“features.” Before choosing an appropriate set of machine learning methods, it is important
to choose a feature set that will allow for the application of these methods. In this section,
we present a variety of features useful in machine learning and tools for eliminating unneeded
features.
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2.3.1 Word Unigrams and Bigrams
Two features commonly used in natural language processing are unigrams and bigrams. Uni-
grams and bigrams can be constructed from either words or characters. Character unigrams and
bigrams are more appropriate for chat or blog natural language processing experiments where
the post or blog belongs to the person who typed it. The use of unigrams and bigrams implies
a bag of words model where the ordering is not considered in the model [6]. A unigram is
comprised of single word and a bigram is a pairing of adjacent words.

2.3.2 Gappy Word Bigrams
In addition to traditional adjacent word bigrams, other types of word bigrams can be defined.
One type of word bigram is the gappy word bigram. Gappy word bigrams are formed by joining
word pairs that are within a given distance from each other [3]. For example, the set of gappy
word bigrams produced by the phrase “the purple dog” is shown in Figure 2.1. The maximum

{START the,START purple,START dog,the purple,
the dog,the END,purple dog,purple END,dog END}.

Figure 2.1: Gappy bigrams formed from the phrase “the purple dog”

interword distance for this set is 2. Adjacent words are considered to have a distance of 0.
Therefore, gappy word bigrams with a maximum distance of 0 are equivalent to traditional
word bigrams. In addition to the words in the phrase, the set of gappy bigrams includes a start
of phrase marker and an end of phrase marker. The use of the these two markers allows the
model to account for word occurrences at the beginning and end of a phrase.

Gappy bigrams are a variant of string kernels presented by Lodhi et al. [7]. String kernels
apply to characters, not words. String kernels were shown to be effective in classifying text
from a subset of the Reuters news agency dataset. Cancedda et al. applied similar principles
as discussed by Lodhi et al. using words instead of characters. Cancedda et al. [8] achieved
comparable results over the same data set with the added benefit of increased computational ef-
ficiency. Bikel and Sorensen [3] explored the utility of gappy n-grams with respect to sentiment
detection. Bikel and Sorensen used gappy bigrams successfully to distinguish between 1-star
and 5-star book reviews.
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2.3.3 Orthogonal Sparse Word Bigrams
The orthogonal sparse word bigram (OSB), like the gappy word bigram, forms word pairs
within a given distance. The difference lies is the treatment of the distance of the two words [9].
Using the concept of a gappy word bigram, the phrases “the purple dog” and “the big purple
dog” both produce “the dog” as member of their bigram sets. However, the distance in each
phrase is different. The OSB captures this by including the distance as part of the bigram. The
resulting bigram set for the phase “the purple dog” is shown in Figure 2.2.

{START 0 the,START 1 purple,START 1 dog,the 0 purple,
the 1 dog,the 2 END,purple 0 dog,purple 1 END,dog 0 END }

Figure 2.2: Orthogonal sparse bigrams formed from the phrase “the purple dog”

Using the concept of OSB, “the purple dog” and “the big purple dog” both produce OSBs that
contain “the” and “dog,” but they are distinct features, i.e., the 1 dog and the 2 dog.

The motivation for OSBs comes from the work of Yerazunis where sparse binary polynomial

hashing (SBPH) was used to discriminate spam. Yerazunis achieved an accuracy of greater than
99.915% [10]. Siefkes et al. attempted the same task using OSBs, which are a proper subset of
SBPH [11]. They reported similar results while dramatically reducing memory requirements.
Using OSBs, Cormack et al. reported substantial improvements in bag-of-words spam filtering
of short messages, including SMS messages, blog comments, and emails summary information
[9].

2.3.4 Feature Discrimination
In machine learning, not all features are useful. One way to discriminate against certain features
is to create and use a stop word list. Stop words are defined as words that have syntactic
function, but do not contribute to the meaning of a text. One approach to generating a stop word
list is to use frequently occurring words in a language [12]. Pre-compiled lists of these stop
words are readily available. Figure 2.3 shows a list of English stop words that is available for
download with the Natural Language Toolkit at http://www.nltk.org.

Another method of feature discrimination is to eliminate features based on the amount of infor-
mation each feature contributes. It is easy to count the number of times a feature appears in a
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i me my myself we our ours ourselves
you your yours yourself yourselves he him his

himself she her hers herself it its itself
they them their theirs themselves what which who

whom this that these those am is are
was were be been being have has had

having do does did doing a an the
and but if or because as until while
of at by for with about against between

into through during before after above below to
from up down in out on off over
under again further then once here there when
where why how all any both each few
more most other some such no nor not
only own same so than too very s

Figure 2.3: Stop word list from the Natural Language Toolkit

class. With these counts, the next step is to calculate entropy using Equation 2.1. Joachims [6]
and McCallum and Nigam [13] both used an entropy-base scheme to prune a feature set.

H(P (C|fi)) = −
∑
j

p(cj|fi) log2 p(cj|fi) (2.1)

2.3.5 TextTiling
Segmentation for natural language processing can take place at a number of levels. The sen-
tence level is useful when sentences contain the necessary features to identify a particular class.
Sometimes a single sentence is insufficient. It may be necessary to look at groups of sentences
or an entire paragraph. Even paragraphs may be insufficient. TextTiling was developed for
exactly this reason. TextTiling groups paragraphs into tiles about a single subtopic [14]. These
larger passage or tiles are then used to extract features and to perform classification experiments.

The TextTiling algorithm consists of three stages: tokenization, lexical score determination, and
boundary identification. For tokenization, stop words are removed and paragraphs are marked.
Text is then tokenized into pseudo-sentences to enable comparison between equal-sized strings.
After tokenization, each pseudo-sentence is assigned a lexical score based on block comparison
and vocabulary introduction. Finally, a depth score is assigned to each combination of possible
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boundary divisions based on the two lexical scores. The final boundary selection is determined
as a function of the mean and standard deviation of the depth scores.

Hearst [14] and Nomoto and Nitta [15] both report success in dividing text into single topic tiles
in both English and Japanese . This suggest that TextTiling applies to a range of languages.

2.4 Machine Learning Techniques
Selecting a feature set and eliminating unhelpful features provides us with a set of inputs. The
next logical step is to identify machine learning techniques that will consume these inputs.
The three methods that were selected for this research are naive bayes, maximum entropy, and
support vector machines. This section provides an overview of each technique, including a
description of the objective function and optimization problem. These concepts will form the
basis for our experimental design and analysis.

2.4.1 Naive Bayes
One machine learning method is naive bayes. This method uses Bayes’ Rule to predict the
likelihood of a class label given the features.

P (C|F ) =
P (F |C)P (C)

P (F )
(2.2)

It is important to note that this method has an assumption that appearance of a feature in a post is
independent of the appearance of other features in the post [13]. Since this assumption is often
erroneous, this method is referred to as naive. For example, naive bayes might be used to predict
the likelihood of a post being persuasive and the likelihood of a post not being persuasive, given
the features in the post. The higher of the two likelihoods is the label assigned to the post.

Another characteristic of naive bayes is the use of a prior probability. There are two common
approaches to assigning a value to this data set. One approach is to use a uniform distribution.
This means if there are four classes, then the prior probability of each class is 1

4
. The second

approach is to use the probability of the class in the training set. If the probability of the first
class is 1

4
and the probability of the second class is 3

4
, then these will be the prior probabilities

for prediction.

In order to perform a classification task using naive bayes, it is necessary to find the most
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probable class, c∗. This is accomplished using the following objective function:

c∗ = arg max
ci∈C

[
P (F |ci)P (ci)

P (F )

]
(2.3)

Since P (F ) remains constant for all classes, this function reduces to:

c∗ = arg max
ci∈C

[P (F |ci)P (ci)] (2.4)

Smoothing

Since naive bayes deals with probability, and it unreasonable to assume the training set will
contain all features, there is a need to smooth the data in order to account for new feature
values. Two commonly applied approaches are add-n smoothing and Witten-Bell smoothing
[16]. Add-n smoothing requires an estimate of the size of the feature set, V . Using V , all
counts for feature occurrences in the vocabulary are increased by n. The total size of the feature
set for the training set is now the size of the old set, N , plus n ∗ V . So,

P (F |C) =
n

N + n ∗ V
(2.5)

for all new feature values in the test set.

Witten-Bell smoothing uses a different approach. This approach uses the probability of a feature
occurring to estimate the probability of new feature values. In order to estimate these probabil-
ity, the number of uniques features, T , is used to estimate the probability of seeing a new type.
Using V , the number of zero counts is estimated as Z = V − T . So, all new feature values in
the test set, receive a probability according to the following equation:

P (F |C) =

 count
T+N

,when count > 0

T
Z(T+N)

, when count = 0
(2.6)

2.4.2 Maximum Entropy

Maximum entropy leverages the idea that models can be initialized to a uniform distribution
and can be updated using known evidence. For any given model, the starting point is a uniform
distribution over the possible number of classes. If there are 10 classes, then the probability of
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each class is 0.10. However, if evidence exists that will raise the likelihood of a given class,
then the model should be updated [17].

An example that illustrates the intuition behind this method is building a Spanish to English
translation system modeled on a human translator. Given an English word, the initial model
starts as a uniform distribution over all the words in Spanish as at first the model does not
take any evidence into account. Then, the model is updated based on the number of choices in
Spanish for the particular word. If there are four choices, then the probability of each Spanish
word is .25. Using training data collected from a human translator, the model can now be
updated to reflect that translator’s use of the four words. If a particular translator uses two of
the four words 65% of the time, then the new model is described the following equation:

P (W ) =

P (w1) + P (w2) = .65

P (w1) + P (w2) + P (w3) + P (w4) = 1.0
(2.7)

The mathematical grounding for maximum entropy is discussed in [18, 17, 19]. Maximum
entropy uses training data, D, to set constraints on a conditional distribution. These constraints
take the form of real-valued functions of a document and the class, fi (d, c). These features
are used to form an approximation of the document distribution expressed by the following
equation:

1

|D|
∑
d∈D

∑
c

P (c|d) fi (d, c) (2.8)

As shown in [19], when the constraints are expressed in the form above, there exists a unique
distribution that has maximum entropy. The unique distribution is in the exponential form
characterized by the equation below:

P (c|d) =
1

Z(d)
exp

(∑
i

λifi(d, c)

)
(2.9)

where Z(d) is a normalizing factor of the form:

Z(d) =
∑
c

exp

(∑
i

λifi(d, c)

)
(2.10)
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Maximum entropy models can be subject to over-fitting, especially with sparse training data.
One way to address over-fitting is to introduce a gaussian prior, λ [17]. λ can be tuned with
values greater than 0. Large values of λ represent a large prior which penalizes the appearance
of features, lowering their contribution to the distribution. Smaller values of λ represent a small
prior and allow for closer fitting to the data [20].

2.4.3 Support Vector Machines

Figure 2.4: Support vector machine hyperplane determination, From [21]

A third machine learning method is the Support Vector Machine (SVM) [22, 23, 24, 25, 26, 27].
The simplest form is a binary classification. All labeled data items are represented as vectors of
feature-values. If the feature vectors are of dimension n, then the task is to find a hyperplane (of
n − 1 dimensionality) to separate data points within the vector space. Figure 2.4 shows a case
where more than one hyperplane exists. In order to decide between the several hyperplanes, it
is necessary to find the hyperplane with the maximum margin. This hyperplane can be found
by solving this optimization problem

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi
(
yiw

Tφ(xi) + b
)
≥ 1− ξi,

ξ ≥ 0

(2.11)
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where i = 1, .., l, xi ∈ Rn, y ∈ 1,−1l, and (xi, yi) are labeled pairs in the training set. In
Figure 2.4, H1 separates the space with a minimal margin, while H2 separates the space with
a maximum margin. In Equation 2.11, C, often referred to as cost, is used to determine the
penalty for misclassification [25]. In the financial world where misclassification could result in
the loss of large amounts of money, C can be set to a high value. This results in a hyperplane
that minimizes loss due to classification errors. In the intelligence community, the cost may
be set to a low value. This will result in a hyperplane that will tolerate higher degrees of
misclassification. In this case, it is more beneficial for an analyst to see all possible documents
than to try to discard some misclassified documents.

Some data sets are not linearly separable in the dimensionality of the vector space. SVM pro-
vides a mechanism for dealing with these types of problems, kernel functions. It is possible to
map input data into a a dot product space, F , using a non-linear map.

Φ : RN → F (2.12)

This mapping may result in a high dimensional dot product that will be expensive to compute.
Some kernels allow efficient computation of the dot product [28]. The following is a list of four
common kernels [25]:

• linear, K(xi, xj) = xTi xj

• polynomial, K(xi, xj) =
(
γxTi xj + r

)d
, γ > 0

• radial basis function, K(xi, xj) = exp (−γ‖xi − xj‖2) , γ > 0

• sigmoid, K(xi, xj) = tanh(γxTi xj + r)

In the kernel functions above, γ controls the flexibility of the hyperplane. High γ values allow
the hyperplane to fit the data more closely. Low γ values force the hyperplane to be more linear.

2.5 Evaluation Criteria
Regardless of which classification algorithm is selected, we must have a measure of success.
Different metrics show success in different aspects of a given problem. In the following section,
we present several metrics and examples of their uses.
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2.5.1 Precision and Recall
Two common metrics for classification problems are precision and recall. Precision measures
how many true positive classifications a system performed in relation to the number of total
positive classifications it performed [29].

Predicted
Value

T F
Actual T 50 5
Value F 25 20

Table 2.1: Example confusion matrix

In the example confusion matrix[30] presented in Table 2.1,

precision =
50

50 + 25
= .666 (2.13)

since 50 items are classified as true positives and 25 items are classified as false positives. In
a perfect world, all systems would be high precision. However, there are some times when
precision is more important than others. The American legal system follows this criteria to the
point that some criminals are set free, but no innocent people are imprisoned.

Recall is a metric that measures how many true positive classifications the system performed
in relation to the number of actual positives in the set being classified [29]. In the example
confusion matrix

recall =
50

50 + 5
= .909 (2.14)

since 50 items are classified as true positives and five items are classified as false negatives.
A common example from the intelligence community is that an analyst would rather see a
document and discard it, rather than potentially miss a document.

2.5.2 Accuracy
Yet another metric is accuracy. This metric measures the number of correct classifications in
proportion to the size of the set being classified [31]. In the example confusion matrix

accuracy =
50 + 20

100
= .7 (2.15)
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since the system classified 50 items as true positives and 20 items as true negatives. This is a
useful metric in multiclass problems when the idea of a false negative or a false positive may
not be strictly meaningful.

2.5.3 F-Score
One final metric is the F-score. This is the harmonic mean of the recall and precision [29].

f − score =
2

1
recall

+ 1
precision

=
2

1
.909

+ 1
.666

= 0.769 (2.16)

The harmonic mean, in contrast to the arithmetic mean, only rewards increases in both recall
and precision. If recall is increased by sacrificing precision, the F-score will fall. Similarly, if
precision is increased by sacrificing recall, the F-score will fall.

2.6 Tools
2.6.1 NPSML Tools
The Naval Postgraduate School has developed a suite of tools to facilitate machine learning
in its natural language processing lab. This suite of tools is publicly available via the Internet
[32]. This suite of tools provides a pipelined approach to converting raw data into the NPSML
format and making it useable with a variety of third-party machine learning tools. The suite
also includes a naive bayes package that uses the NPSML file format.

2.6.2 Maximum Entropy (GA) Model Optimization Package
The NPSML file format is easily convertible to the Maximum Entropy (GA) Model (MegaM)
optimization package file format. This makes MegaM a natural candidate to conduct maximum
entropy experiments. In addition to maximum entropy, MegaM can be used to run experiments
using other machine learning techniques, such as perceptron and multitron. MegaM is publicly
available via the Internet [20].

2.6.3 LIBSVM
The NPSML tool suite provides a utility to convert files to LIBSVM and SVMlight file formats.
These two third-party packages have the same file format; however, their licensing terms are
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different. SVMlight has a stricter license, which prohibits commercial use without consent.
Since this is a military institution, we decided to use LIBSVM in order to avoid any intellectual
property disputes. LIBSVM is publicly available via the Internet [24].

2.7 Recent Work in Persuasion Detection
Until recently, there has been no previous work with machine learning techniques for persuasion
detection. Tasks similar to persuasion detection have been explored, such as sentiment detection
and perspective detection. Lin, Wiebe, and Hauptman investigated the idea of perspective iden-
tification at the sentence and document level [2]. Using the articles from the bitterlemons Web
site, they were able to discriminate between Palestinian authors and Israeli authors who had
written about the same topic. They used two different naive bayes methods that outperformed a
support vector machine approach [2]. Bikel and Soren used machine learning techniques to dif-
ferentiate between differing opinions [3]. They report an accuracy of 89% when distinguishing
between 1-star and 5-star consumer reviews, using only lexical features.

Most recently, Gilbert [4] presented the first work in persuasion detection. He presented the
persuasion model described in section 2.2. In [4], an annotation scheme for a persuasion corpus
was presented. A pilot application of this scheme showed some agreement between annotators,
but not strong agreement. After revising the annotation scheme, a more extensive study showed
significant agreement between annotators. The resulting corpus of 37 transcripts were used as
the basis for this thesis.

2.8 Conclusion
In this chapter, we presented all concepts relevant to detecting persuasion in conversation using
machine learning techniques. We described the persuasion model used in this research. We
identified features that will serve as inputs to our three machine learning classification tech-
niques. We explained the uses of a suite metrics needed to evaluate our hypotheses. Lastly, we
concluded with a presentation of software tools that enabled this research. We now have all the
concepts and tools to design experiments to detect persuasion in conversation.
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CHAPTER 3:
Techniques

3.1 Introduction
In this chapter, we describe all phases of our experimental design. First, we present a description
of the data. Next, we describe the process associated with making the raw data usable for
machine learning, and the possible effects of the process on the results of the experiments. We,
then, continue with a discussion about the features selected for the experiments. Lastly, we
present the details of the experimental setup for each machine learning technique.

3.2 Description of Data
The data for these experiments comes from a corpus of labeled data created at the Naval Post-
graduate School. The corpus contains negotiation transcripts annotated and adjudicated by two
annotators. The tagging scheme includes all of the principles from the Cialdini model (see sec-
tion 2.2). An additional category was included to capture persuasive portions of the transcripts
that the Cialdini model did not capture. This category is simply labeled “Other.” The corpus
contains four sets of transcripts: two sets of two FBI negotiators, one set of negotiator tran-
scripts from the Waco, Texas stand off, and a single San Diego Police negotiation. The quality
of the transcripts varies, not only between the four sets, but within each set. These transcripts
were transcribed from audio tapes after the events occurred. The transcribers vary in their use
of punctuation, capitalization, and degree to which they attempt to capture non-English and
environmental information. The raw transcripts contain 18,857 utterances, which are referred
to as posts. In order to observe privacy laws and sound research principles, all data has been
anonymized, with the exception of the Waco stand off transcripts, which are publicly available
on the Internet.

Figure 3.1 shows the counts of each feature set by rank order. The axes in Figure 3.1 are
log− log axes. Since the shapes of the graphs are roughly linear, each feature set follows a
power-law distribution, commonly called a Zipf law [33].
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Figure 3.1: Scatter plots of four feature sets

Tables 3.1 through 3.4 show the features with the most predictive power by class for each feature
set using naive bayes. Note that some of the most predictive features occur in both classes. In
order to address this phenomenon, we apply a feature discrimination technique described in
section 3.14.1. Tables 3.3 and 3.4 show that posts shorter than five words are more likely to be
non-persuasive.

22



Unigrams
persuasive not persuasive

Feature − ln(p(Feature)) Feature − ln(p(Feature))
KNOW 4.858649 OKAY 3.609763
DONT 5.519006 KNOW 3.667643
GET 5.551796 <NAME> 3.892805

OKAY 5.585698 YEAH 4.077149
GONNA 5.620789 WELL 4.08324

IM 5.734118 IM 4.189884
GOT 5.908471 DONT 4.250603

<NAME> 6.008555 RIGHT 4.25543
MINUTES 6.062622 GET 4.433245

RIGHT 6.180405 THATS 4.585952

Table 3.1: Predictive unigrams, ranked by class (NLTK stopwords removed)

Bigrams
persuasive not persuasive

Feature − ln(p(Feature)) Feature − ln(p(Feature))
YOU KNOW 5.190261 startPost OKAY 4.951206
GOING TO 6.061165 YOU KNOW 5.208624

startPost WELL 6.180557 startPost YEAH 5.282209
startPost OKAY 6.393786 OKAY endPost 5.489037

TO DO 6.564516 startPost I 5.499077
TALK TO 6.569849 startPost WELL 5.622425
YOU TO 6.569849 YEAH endPost 5.914684
AND I 6.575211 I DONT 5.936323

IF YOU 6.580602 startPost NO 5.976169
I DONT 6.586022 GOING TO 6.077023

Table 3.2: Predictive bigrams, ranked by class
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Gappy Bigrams
persuasive not persuasive

Feature − ln(p(Feature)) Feature − ln(p(Feature))
YOU KNOW 6.430376 startPost endPost 4.90189
YOU YOU 6.488989 startPost YOU 5.898575
YOU TO 6.520223 startPost I 5.911928
TO YOU 6.567135 YOU endPost 6.045993

startPost YOU 6.632002 startPost OKAY 6.197869
I YOU 6.772881 TO endPost 6.298162

YOU endPost 6.843388 YOU KNOW 6.451672
AND YOU 6.861407 THE endPost 6.455523
YOU AND 6.984368 startPost YEAH 6.554118
startPost I 7.054029 OKAY endPost 6.566976

Table 3.3: Predictive gappy bigrams, ranked by class

Orthogonal Sparse Bigrams
persuasive not persuasive

Feature − ln(p(Feature)) Feature − ln(p(Feature))
YOU 0 KNOW 6.865789 startPost 1 endPost 5.814345
GOING 0 TO 7.736692 startPost 2 endPost 6.4359

startPost 0 WELL 7.856084 startPost 0 OKAY 6.485967
I 1 YOU 7.889236 YOU 0 KNOW 6.743384

YOU 3 YOU 8.042763 startPost 0 YEAH 6.81697
startPost 0 OKAY 8.069313 startPost 3 endPost 6.912361

YOU 4 YOU 8.115192 startPost 4 endPost 6.947836
TO 1 YOU 8.13415 OKAY 0 endPost 7.023797
YOU 1 TO 8.188218 startPost 0 I 7.033837

YOU 1 YOU 8.224211 startPost 0 WELL 7.157186

Table 3.4: Predictive OSBs, ranked by class

24



3.3 Raw Data to Usable Text
The original data format was 4 excel workbooks with tabs. Each tab in the workbook was a
single transcript. The original excel type was .xlsx. The first step was to save these workbooks
as .xls to be readable by python scripts. After changing the file format to .xls, a python script
easily read each cell. By iterating over the rows, it was possible to make a simple one-for-one
copy and save the ASCII text to a comma-separated value file.

In addition to converting the format, the scripts also cleaned up irregularities in the data. While
reading from each cell, the scripts made several changes to each post. The punctuation was
removed as these features were generated by the transcriber, not the participants in the negoti-
ation. As this research is concerned with persuasion attempts by the negotiations participants
and not identification of transcribers, those features were discarded. During the anonymiza-
tion process, named entities received bracketed place holders, <HOSTAGE TAKERS FIRST
NAME> for example. These named entity place holders were replaced with single tokens by
replacing all spaces between angle brackets with underscores. The resulting token from the
previous example is <HOSTAGE TAKERS FIRST NAME>. Lastly, transcribers introduced
more features by placing comments in the text in an effort to capture non-English and environ-
mental information. Since individual transcribers varied in their use of comments and since this
research is focused on text, the role of comments was minimized by using a similar approach to
the named entities. All comments appear as single tokens with square brackets and underscores.

The last step before writing the clean post to the .csv file was to add some additional information
before each post. The first field in each line is the transcript name. The second field is the line
number from the .xls file. These two pieces of information proved invaluable during the data
preparation tool development phases. Without this data, it would have been very difficult to
verify errors is data conversion. It is also hoped that this information will be of use during
future analysis. Lastly, the class label and speaker were added before the post. Each transcript
was saved into its own separate .csv file. Figure 3.2 shows the resulting file format.

3.4 Additional Segmentation
Each entry in the .csv files represents a post. Some posts are only a few words, while others
are several sentences long. This variance in length may affect the classification task. Therefore,
it is necessary to explore another type of segmentation. One way to achieve a different type
of segmentation is to group related posts together. For this, we used the TextTiling method
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Rogan beta,221,1,ON80,Yeah but that fiddler isnt gonna cost so much if you walk out easy

Rogan beta,223,1,ON80,come on <HT01> youre just making it worst on yourself

Rogan charlie,641,0,PNl,Alright [both hang up]

Rogan charlie,691,3,HT1,Bring <Wife First Name> and Ill come out

Figure 3.2: Example from .csv files

described in section 2.3.5. Each post is treated as a paragraph. Using the Natural Language
Toolkit (NLTK), each .csv was grouped into a series of segments, referred to as tiles. The
format of the .tile file is similar to the .csv file format. The first field is the transcript name. The
second field is the line range from the original .xls file. Line ranges are inclusive and appear
in the following format: <first line number> <last line number>. The line number range is
followed by the a 0 or 1 to indicate not persuasive or persuasive. A tile was labeled as persuasive
if any of the original posts were labeled with any one of the nine persuasion categories. A tile
was labeled as not persuasive if all of the original posts were labeled as not persuasive. The last
field in each line in the file is the tile itself. Figure 3.3 shows the resulting file format.

Rogan beta,210 231,1,[Sighs] Go have a cup of coffee I [...] Yeah but that fiddler isnt gonna
cost so much if you walk out easy [...] come on <HT01> youre just making it worst on yourself
[...] Well you didnt get caught [Laughs] No but I did this time Yeah you did this time

Rogan charlie,638 654,1,Alright OK Alright Alright [both hang up] [...] nothing they gonna do
Aint nobody gonna shoot you Throw the gun off the balcony

Rogan charlie,677 687,0,<ON1> I be I be in a police car right behind [...] But I tried to tell
<Wife First Name> she should have told me about that guy right

Figure 3.3: Example from .tile files

3.5 Initial Cross Validation
The next step in the data preparation pipeline was to divide the data into test and training sets.
First, all .csv files were concatenated into a single .csv file and all .tile files were concatenated
into a single .tile file. These files maintained the original post and tile ordering within each
transcript. These files were each internally shuffled prior to creating test and training sets. We
used ten-fold cross validation. This means there were 10 test and training splits for each type
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of segmentation. Each test set was 10% of the number of post or tiles. The other 90% was
used for training data. Each post and each tile appeared in only one of the 10 test sets. Each
post and each tile appear in 9 of the 10 training sets. In creating models for each machine
learning technique, training sets were used to train each model. Then, each model was tested by
classifying the data in the test set using the model. No item in the test set was used for training
the model. For each type of segmentation, the data was split into test and training files that were
paired using indexes, meaning that test.0 and train.0 were paired for a single experiment. These
files were stored in the original .csv or .tile format.

3.6 Randomized Grouping Cross Validation
The method of randomization presented in section 3.5 had the potential to influence the out-
come of the parameter tuning experiments due to repetition of similar phrases within a single
transcript. A review of the data showed that often similar phrases appeared shortly after or well
after the first appearance of the phrase. This is quite common in this domain for two reasons.
The first reason is that many of the conversations were conducted using poor communications
equipment or were conducted in noisy enviroments where the speakers were forced to repeat
themselves. The second reason for this behavior is the nature of a negotiation; each party is
trying to achieve certain goals. Failure to achieve that goal does not result in abandoning the
goal. On the contrary, if the goal is important, such as releasing a hostage, the request to have
that goal met is more likely to be repeated later in the conversation.

As a result of this repetition, it was necessary to develop a new approach to randomization. The
file names for the each transcript were shuffled and grouped into 6 groups of 6 transcripts. Each
group of 6 transcripts was concatenated into a single test set. The training sets were formed
by concatenating 5 test sets and pairing it with the 6th test set. This process was conducted for
both posts and tiles. The shortest transcript (19 posts, 0 tiles) was not included in these folds.

3.7 Leave-One-Out and Leave-One-In Validation
The two methods presented in section 3.5 and section 3.6 were used to find suitable parameters
for each machine learning technique and to determine whether persuasion detection is possible.
If persuasion detection is possible, it is necessary to investigate whether or not these methods
generalize. Since no other data sets are available, we used two approaches. The first way, called
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leave-one-out, entailed training on three transcript types and testing on the remaining type. The
second method, called leave-one-in, entailed training on only one transcript type and testing on
the other three types.

3.8 Differences in Transcript Type
In the course of this research, the results indicated that one group of transcripts might be suf-
ficiently different from the others as to adversely affect the results of the experiment. In order
to observe the effects of this group, leave-one-out validation and leave-one-in validation were
repeated using the three remaining transcript types. The same procedures were used as are
outlined in section 3.7.

3.9 Majority and Single Classifier Voting
The results of this research indicated that a voting scheme over the three types of classifiers
could be beneficial. The first voting scheme is called majority voting. In order to be classified
as persuasive, a post had to receive two or more votes from the three classifier. A second
scheme called single classifier voting was also explored. In this scheme, a post was classified
as persuasive if it received a single vote from any of the three classifiers. For both schemes, all
votes were counted only within a feature set. Voting schemes that combined votes across the
different feature sets were not explored.

3.10 Feature Extraction
As noted earlier in this section, the original data contained many features introduced by the
transcribers and not by the negotiation participants. After removing these artifacts, the only
features that remained are words. Since unigrams and bigrams are common features used in
other natural language processing research, we used them as a baseline to compare the perfor-
mance of other features. In this research, we used two additional feature types: gappy word
bigrams and orthogonal sparse word bigrams, as described in section 2.3. These features were
chosen based on their performance in sentiment detection and short message spam filtering. In
addition, these two features are less expensive with regards to memory and to computational
complexity than similar, more verbose features, such as sparse binary polynomial hashing [10].

For each test and training file, each of the four features are extracted from each tile or post. The
result is a file in the NPSML format as shown in Figure 3.4. The key field was the transcript
name and the line number or range. The weight was set 1.0 for all posts and all tiles. The classes
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key weight class feature label 1 feature value 1[ feature label 2 feature value 2. . . ]\n

Figure 3.4: Feature extraction file format

were restricted to 0 for non-persuasive and 1 for persuasive. During extraction, all letters are
converted to uppercase. This collapses “lowercase” and “Lowercase” into a single feature,
for example. This also helped reduce the number of false features introduced by transcribers.
Gappy bigrams and orthogonal sparse bigrams were extracted using a distance of 4. Since
adjacent words have a distance of zero, this means that a single word was paired with each of
the 5 closest words. No stemming was done. Figure 3.5 shows the resulting file entries for a
single post. Each feature type was extracted and saved into a file using the following naming

Taylor5 LP 2124 1.0 0 WELL 1 I 1 CAN 1 SEE 1 HOW 1 YOU 1 DID 1

Taylor5 LP 2124 1.0 0 startPost WELL 1 WELL I 1 I CAN 1 CAN SEE 1 SEE HOW 1 HOW YOU 1 YOU DID
1 DID endPost 1

Taylor5 LP 2124 1.0 0 startPost WELL 1 startPost I 1 startPost CAN 1 startPost SEE 1 startPost HOW 1
WELL I 1 WELL CAN 1 WELL SEE 1 WELL HOW 1 WELL YOU 1 I CAN 1 I SEE 1 I HOW 1 I YOU
1 I DID 1 CAN SEE 1 CAN HOW 1 CAN YOU 1 CAN DID 1 CAN endPost 1 SEE HOW 1 SEE YOU 1 SEE -
DID 1 SEE endPost 1 HOW YOU 1 HOW DID 1 HOW endPost 1 YOU DID 1 YOU endPost 1 DID endPost
1

Taylor5 LP 2124 1.0 0 startPost 0 WELL 1 startPost 1 I 1 startPost 2 CAN 1 startPost 3 SEE 1 startPost 4 -
HOW 1 WELL 0 I 1 WELL 1 CAN 1 WELL 2 SEE 1 WELL 3 HOW 1 WELL 4 YOU 1 I 0 CAN 1 I 1 SEE 1
I 2 HOW 1 I 3 YOU 1 I 4 DID 1 CAN 0 SEE 1 CAN 1 HOW 1 CAN 2 YOU 1 CAN 3 DID 1 CAN 4 endPost
1 SEE 0 HOW 1 SEE 1 YOU 1 SEE 2 DID 1 SEE 3 endPost 1 HOW 0 YOU 1 HOW 1 DID 1 HOW 2 endPost
1 YOU 0 DID 1 YOU 1 endPost 1 DID 0 endPost 1

Figure 3.5: Feature extraction file example for unigrams, bigrams, gappy bigrams, and orthogonal sparse bigrams

convention shown in Figure 3.6.

3.11 Additional Pre-computed Information
In addition to extracting the features from the data, it was necessary to extract token counts
and token entropy. Each of which were calculated for both posts and tiles. Each training set
had three count files and one entropy file associated with it. The three count files contained the
feature counts for each class and the overall feature counts. From these count files, a single
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<feature abbreviation> NPSML <test|train>.<0-9>
File Name File Description
BGM NPSML train.0 Bigrams, NPSML format, training set 0
GBG NPSML train.0 Gappy bigrams, NPSML format, training set 0
OSB NPSML test.0 Orthogonal sparse bigrams, NPSML format, test set 0
UGM NPSML test.0 Unigrams, NPSML format, test set 0

Figure 3.6: Feature extraction naming convention

entropy file was generated. These files were used for file format conversion, as well as, feature
discrimination.

3.12 Classification Tasks
We focused on binary classification of posts from the original data and tiles developed from
those posts. In the original data, each post was labeled with the type of persuasion from Cial-
dini’s persuasion model with an additional “Other” category. However, due to the sparseness of
persuasion at the post level (less than 12% of posts are persuasive), we decided to address the
binary classification of “persuasion” versus “not persuasion.” Possible refinement of this task
are discussed in section 5.2.

3.13 Parameter Tuning
The following section is a description of the experimental process conducted for three machine
learning techniques presented in Chapter 2. In each section, there is a discussion of the the tools
and parameter tuning process used.

3.14 Naive Bayes
Naive bayes experiments were conducted using a naive bayes package developed in the Naval
Postgraduate School Natural Language Processing Lab. The learning portion of this package
used an NPSML file as input and generated a model which was written out as a binary file. The
binary representation of the model eliminated round off errors that could have occured due to
ASCII representations of floats. The learning portion implemented Laplace add-one smoothing.
The classification portion of this package used the model generated from the learning process.
The input for the classification process was an NPSML file. The resulting output was a 2 column
text file listing the key and the predicted class.
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The parameter tuned in this set of experiments was the prior probability of the two classes. The
information for the prior was contained in the model output by the learning portion of the pack-
age. After the learning phases, a binary input-output tool developed in the Naval Postgraduate
School Natural Language Processing Lab was used to overwrite the two existing values. The
prior probability of persuasion was increased by 5% for each new set of experiments. The re-
sulting set of experiments included one set with the prior probability proportional to probability
of the class in the training set and 19 experiments with the prior probability of persuasion set a
multiple of 5%, starting at 5% and ending at 95%. For each experiment the prior probability of
not persuasion was set to the 1−p(persuasion). For each feature type, a series of 20 experiments
was conducted over ten folds.

3.14.1 Feature Discrimination
In addition to tuning the prior probability of persuasion, experiments were also conducted using
a reduced feature set. The feature set for these experiments was reduced based on the entropy
files described earlier in this chapter. These files were sorted based on their entropy. Features
with the highest entropy appeared first. Features with the same entropy appeared in reverse
alphabetical order. Experiments were run removing the top 5%, 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45% and 50% of the types in the feature set from the training and test data. These
experiments followed the naive bayes protocol previously outlined. For each feature type, a
series of 200 experiments was conducted over ten folds and six folds.

3.15 Maximum Entropy
Maximum entropy experiments were conducted using the Maximum Entropy GA Model (MegaM)
Optimization package developed at the University of Utah [20]. The learning portion of this
package used a file format similar to the NPSML file format. NPSML files can be converted to
MegaM format by removing the first two columns (key and weight). The learning portion of
this package used a MegaM file as input and generates a model which by default was written to
the standard output. The standard output can then be piped to a file. The resulting model was a
2 column text file listing features and their weights. Weights describe the λi’s in Equation 2.9.
When running the learning portion of these experiments the following command was used:

megam -quiet -fvals -lambda λ -repeat 100 binary train.i > weights.i , where i is an index

Figure 3.7: MegaM command
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The -quiet flag suppressed output to the screen. The -fvals flag signified the use of named
features, as opposed to an integer index to a feature list. The -lambda flag allowed the gaussian
prior in the model to be tuned. The -repeat flag ensured that iterative improvement is attempted
at least 100 times. This is needed because the MegaM documentation warned that sometimes
the algorithm stops prior to convergence. The binary flags indicated what type of model to
build.

The parameter tuned in this set of experiments was the gaussian prior, referred to as λ. The
initial value of λ was set to 2−10. For each subsequent set of experiments over the 10 folds, λ
was increased by a power of 2. The last set of experiments used λ = 210. Higher values of λ
result in a smoother fitting distribution.

3.16 Support Vector Machine
SVM experiments were conducted using the LIBSVM package developed at the National Tai-
wan University. The learning portion of this package used a file format shown in Figure 3.8.
Conversion from the NPSML format to the LIBSVM format required a dictionary that mapped

class feature index 1:feature value 1[ feature label 2:feature value 2. . . ]\n
Figure 3.8: LIBSVM file format

the features indexes to human readable feature names. The count files created during data pre-
processing were used for this task. The NPS Machine Learning library contained a tool to
convert NPSML files to LIBSVM files.

The learning portion of this package used an LIBSVM file as input and generated a model
which was written to a file. The resulting model was a list of weights and support vectors for
the hyperplane dividing the two classes. When running the learning portion of these experiments
the following command was used: The -q flag suppressed output to the screen. The -cost flag

svm-train -q -cost C -gamma γ train.i model.i , where i is an index

Figure 3.9: LIBSVM command format

allowed the penalty for misclassification in the model to be tuned. The -gamma flag allowed the
γ in the radial basis kernel to be tuned. Cost and γ are described in section 2.4.3.

The parameters tuned in this set of experiments were cost and γ. The initial value of cost was set
to 2−5 and increased by 2 powers of two until reaching a maximum value of 215. For each value
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of cost, the initial value of γ was set to 2−15 and increased by 2 powers of two until reaching
a maximum value of 25 [25]. Each cost-γ pair was used for experiments across 10 folds and 6
folds.

3.17 Conclusion
This chapter has presented a description of the data, the process associated with data usable
for machine learning, the features selected for the experiments, the details of the experimental
setup for each machine learning technique. Now that the experimental design process is clear,
the next step is to review and analyze the results.
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CHAPTER 4:
Results and Analysis

4.1 Introduction
In this chapter, we present the results of our experiments. First, we present and discuss the
results of our parameter tuning experiments. Next, we describes the results of the experiments
conducted using 6-fold cross-validation over post and tiles. We continue with an exploration of
the effects of holding out transcript types and training on singular transcript types. Lastly, we
explore the possibility that one set of transcripts is significantly different from the rest.

4.2 Naive Bayes Parameter Tuning
As discussed in Chapters 2 and 3, naive bayes, maximum entropy, and support vector machines
all have parameters than can affect the outcome of an experiment. This being so, it is important
to find the correct parameters for the experiments conducted in this research. This was done
by conducting a grid search over the parameter space. The results of these parameter tuning
experiments are presented in section 4.5.

For the naive bayes experiments, the two parameters in question are the prior probabilities of
the classes and the percentage reduction of the number of tokens in the feature set. If a class
has a high prior probability, the prior probability may overwhelm the conditional probabilities
in the argmax function presented in Equation 2.4. This may lead to overprediction of the more
frequently occurring class. Conversely, more equally distributed classes will have similar prior
probabilities. This may lead to over emphasis of the occurrence of the tokens in a post or a
tile. The prior probabilities based on occurrence in the entire data set are shown in Table 4.1.
The results of the parameter tuning experiments show that increasing the prior probability of
persuasion increased the F-scores for experiments over posts and tiles. This change in F-score
resulted from an increase in recall with a much smaller decrease in precision.

Naive Bayes
Class Posts Tiles

Persuasive 0.116 0.455
Not Persuasive 0.884 0.545

Table 4.1: Prior probabilites of each class by segmentation type
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The parameter tuning experiments showed the effects of feature selection on F-scores, as well.
Features were removed based on their conditional entropy. The features with the highest entropy
were removed first. The highest F-scores for post experiments were achieved using no reduction
in the features set for unigrams and OSBs and a 10% reduction for bigrams and gappy bigrams.
The maximum F-scores for tile experiments required more pruning of the feature set. Unigrams
performed best over tiles with a 40% reduction. Bigrams and OSBs experiments performed best
with a 50% reduction, while gappy bigrams only required a 10% reduction. The results of these
experiments appear in Figures 4.1 through 4.16. Since tiles are longer than posts,it was more
likely that the same features were repeated in different post. This resulted in more features with
minimal amounts of information. Removing these feature resulted in the maximum F-scores
for each set of experiments.

Table 4.2 shows the parameters used for all subsequent naive bayes experiments. Note that
some parameter sets performed equally well during parameter tuning (see Figures 4.1 through
4.16).In these cases, the prior probability closest to the probability of occurrence in the data set
and the smallest percentage of reduction in the feature set were chosen.

Naive Bayes
Posts Tiles

Features Prior Reduction Prior Reduction
Unigrams 0.15 0.00 0.95 0.40
Bigrams 0.45 0.10 0.95 0.50
Gappy 0.95 0.10 0.65 0.10
OSBs 0.95 0.00 0.95 0.50

Table 4.2: Naive bayes parameters
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4.2.1 Naive Bayes over Posts
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Figure 4.1: Naive bayes 10-fold averaging for unigrams over posts
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Figure 4.2: Naive bayes 6-fold averaging for unigrams over posts

37



percent of reduction

0.1
0.2

0.3
0.4

pr
io

r p
(p

er
su

as
io

n)

0.2

0.4

0.6

0.8

F-
S
co

re

0.25

0.30

0.35

0.40

0.45

0.50

Maximum
Reduction: 0.05
p(persuasion): 0.45
F-Score: 0.539

Figure 4.3: Naive bayes 10-fold averaging for bigrams over posts
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Figure 4.4: Naive bayes 6-fold averaging for bigrams over posts
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Figure 4.5: Naive bayes 10-fold averaging for gappy bigrams over posts
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Figure 4.6: Naive bayes 6-fold averaging for gappy bigrams over posts
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Figure 4.7: Naive bayes 10-fold averaging for orthogonal sparse bigrams over posts
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Figure 4.8: Naive bayes 6-fold averaging for orthogonal sparse bigrams over posts
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4.2.2 Naive Bayes over Tiles
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Figure 4.9: Naive bayes 10-fold averaging for unigrams over tiles
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Figure 4.10: Naive bayes 6-fold averaging for unigrams over tiles
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Figure 4.11: Naive bayes 10-fold averaging for bigrams over tiles
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Figure 4.12: Naive bayes 6-fold averaging for bigrams over tiles
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Figure 4.13: Naive bayes 10-fold averaging for gappy bigrams over tiles
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Figure 4.14: Naive bayes 6-fold averaging for gappy bigrams over tiles
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Figure 4.15: Naive bayes 10-fold averaging for orthogonal sparse bigrams over tiles
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Figure 4.16: Naive bayes 6-fold averaging for orthogonal sparse bigrams over tiles

44



4.3 Maximum Entropy Parameter Tuning
For the maximum entropy experiments, the two parameters in question are the gaussian prior, λ,
and the percentage reduction of the number of tokens in the feature set. A high λ places a higher
penalty on the weights of the features. This leads to a smoother fitting of the distribution to the
data. A low λ penalizes the weights of the features less, and leads to a tighter fitting of the distri-
bution to the data. The results of the parameter tuning experiments in Figures 4.17 through 4.32
show that decreasing the gaussian prior probability increased the F-scores for experiments over
posts. This was primarily due to steep decreases in recall as the value of λ was increased. The
maximum F-scores for tile experiments were achieved by increasing the gaussian, with the ex-
ception of unigrams. The results of the parameter tuning experiments are shown in Figures 4.17
through 4.32. For bigram experiments, the F-score trend was explained by an increase in recall
with a less significant increase in precision as the value of λ was increased. For increased λ
values, the unigram experiments showed an initial decrease in recall, which was then followed
by an increase in recall.

As in the naive bayes experiments, features were removed based on their conditional entropy
(see Equation 2.1). The features with the highest entropies first were removed first. The highest
F-score for post experiments were achieved using no reduction for unigrams and bigrams, a 5%
reduction for OSBS, and 10% reduction for gappy bigrams. Tile experiments performed best
with a 10% reduction for unigrams and bigrams and a 5% reduction for gappy bigrams and
OSBs.

Table 4.3 shows the parameters used for all subsequent maximum entropy experiments. As
in the naive bayes experiments, note that some parameter sets performed similarly. In these
cases, the largest λ value was chosen to discourage over fitting [17]. The smallest percentage
of reduction in the feature set were also chosen.

Maximum Entropy
Posts Tiles

Features Lambda Reduction Lambda Reduction
Unigrams 2−2 0.00 2−7 0.10
Bigrams 2−2 0.00 28 0.10
Gappy 2−10 0.10 210 0.05
OSBs 2−8 0.05 210 0.05

Table 4.3: Maximum entropy parameters
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4.3.1 Maximum Entropy over Posts
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Figure 4.17: Maximum entropy 10-fold averaging for unigrams over posts
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Figure 4.18: Maximum entropy 6-fold averaging for unigrams over posts
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Figure 4.19: Maximum entropy 10-fold averaging for bigrams over posts
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Figure 4.20: Maximum entropy 6-fold averaging for bigrams over posts
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Figure 4.21: Maximum entropy 10-fold averaging for gappy bigrams over posts

percent of reduction

0.1
0.2

0.3
0.4

lo
g 2
(λ

)

5

0

5

F-
S
co

re

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Maximum
Reduction: 0.1
log2(λ): -10.0
F-Score: 0.394

Figure 4.22: Maximum entropy 6-fold averaging for gappy bigrams over posts
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Figure 4.23: Maximum entropy 10-fold averaging for orthogonal sparse bigrams over posts
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Figure 4.24: Maximum entropy 6-fold averaging for orthogonal sparse bigrams over posts
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4.3.2 Maximum Entropy over Tiles
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Figure 4.25: Maximum entropy 10-fold averaging for unigrams over tiles
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Figure 4.26: Maximum entropy 6-fold averaging for unigrams over tiles
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Figure 4.27: Maximum entropy 10-fold averaging for bigrams over tiles
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Figure 4.28: Maximum entropy 6-fold averaging for bigrams over tiles
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Figure 4.29: Maximum entropy 10-fold averaging for gappy bigrams over tiles
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Figure 4.30: Maximum entropy 6-fold averaging for gappy bigrams over tiles
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Figure 4.31: Maximum entropy 10-fold averaging for orthogonal sparse bigrams over tiles
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Figure 4.32: Maximum entropy 6-fold averaging for orthogonal sparse bigrams over tiles
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4.4 Support Vector Machine Parameter Tuning
As discussed in Chapter 2, SVM has two parameters, the cost, C, and the kernel parameter, γ.
C is a penalty for misclassification, and γ controls the linearity of the hyperplane. Lower values
of γ force the hyperplane to be more linear, while higher values allow for closer fitting of the
hyperplane to the data. The results of the parameter tuning experiments show that a high C
increased F-score for posts, while a lower C increased the F-score for tiles. These values may
be the result of the class labeling process described in section 3.4. Tile were labeled persuasive
if a single post was labeled as persuasive. This means that it is possible for a long tile to contain
a low proportion of persuasive posts. The result is a tile with many of the same features as a
non-persuasive tile, but a different class label. The maximum F-scores for posts experiments
were achieved by low γ values. Tile experiments performed best with slightly higher γ values
than posts, but still less than 1. No parameter tuning was conducted over the percentage of
feature reduction. As a result, all SVM experiments used every feature in the feature set.

Table 4.4 shows the parameters used for all subsequent SVM experiments. Again, note that
some parameter sets performed equally well during parameter tuning (see Figures 4.33 through
4.48). In these cases, the smallest γ value and highest C were chosen to discourage over-fitting.

Support Vector Machine
Posts Tiles

Features C γ C γ
Unigrams 215 2−15 2−1 2−7

Bigrams 27 2−7 21 2−7

Gappy 27 2−11 21 2−9

OSBs 213 2−11 23 2−9

Table 4.4: SVM parameters
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4.4.1 Support Vector Machine over Posts
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Figure 4.33: SVM 10-fold averaging for unigrams over posts
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Figure 4.34: SVM 6-fold averaging for unigrams over posts
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Figure 4.35: SVM 10-fold averaging for bigrams over posts
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Figure 4.36: SVM 6-fold averaging for bigrams over posts
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Figure 4.37: SVM 10-fold averaging for gappy bigrams over posts
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Figure 4.38: SVM 6-fold averaging for gappy bigrams over posts
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Figure 4.39: SVM 10-fold averaging for orthogonal sparse bigrams over posts
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Figure 4.40: SVM 6-fold averaging for orthogonal sparse bigrams over posts
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4.4.2 Support Vector Machine over Tiles
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Figure 4.41: SVM 10-fold averaging for unigrams over tiles
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Figure 4.42: SVM 6-fold averaging for unigrams over tiles
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Figure 4.43: SVM 10-fold averaging for bigrams over tiles
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Figure 4.44: SVM 6-fold averaging for bigrams over tiles
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Figure 4.45: SVM 10-fold averaging for gappy bigrams over tiles
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Figure 4.46: SVM 6-fold averaging for gappy bigrams over tiles
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Figure 4.47: SVM 10-fold averaging for orthogonal sparse bigrams over tiles
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Figure 4.48: SVM 6-fold averaging for orthogonal sparse bigrams over tiles
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4.5 Effects of Randomization Scheme on Parameter Tuning
As a result of the parameter tuning process, we gained valuable insight into the effect of dif-
ferent approaches to randomization. As described in section 3.5 and section 3.6, there were
two approaches used to find parameters. The results of both sets of experiments are included
in Figures 4.1 through 4.48. When comparing the two methods, it was evident that the repe-
tition, noted in section 3.6, affected the results of the parameter tuning experiments for both
posts and tiles. For this reason, the peaks of the first method are higher than the peaks of the
second method for all metrics. The parameter shown in Table 4.2, Table 4.3, and Table 4.4 are
the result of this second approach to randomization. Interestingly, the placement of the peaks in
both sets of results are similar for post, but not for tiles. This lends confidence to our conclusion
that the parameters in Table 4.2, Table 4.3, and Table 4.4 are appropriate for subsequent post
experiment. The results for tiles vary greatly across the two sets of experiments. The cause of
this disparity may be reflected in the subsequent results.

Having selected a set of parameters, the next task is to test the validity of these parameters over
5 repetitions of 6-fold validation, as well as to analyze trends in the results. The first set of
results will show the performance of each technique over posts using four feature sets.

4.6 Six-fold Cross-validation with 5 Repetitions over Posts
The results of the experiments described in section 3.6 using posts are presented in this section.
For this set of results and all subsequent sets of results, the baseline accuracy is the accuracy that
would result from classifying all the posts or tiles in the test set as the most common class in the
training set. The baseline F-score is calculated is the F-score that would result from classifying
all posts or tiles as persuasive. The percent change is calculated as a percentage of the baseline
metric.

4.6.1 Maximum Entropy
Table 4.5 shows that accuracy across all feature types was slightly better than the baseline accu-
racy, when using maximum entropy. F-scores for experiments with unigrams were the highest.
In comparison to unigrams, experiments with bigrams had increased precision, but decreased
recall. Gappy bigrams experiments showed lower precision and recall than unigram experi-
ments. OSB experiments had the highest precision but the lowest recall, with the exception of
repetition 4. The general trend is an exchange of increased precision at the expense of decreased
recall, with the gappy bigram experiments as the exception.
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Repetition 1
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.894 0.887 0.8 0.53 0.368 0.432 0.202 113.9
bigrams 0.9 0.887 1.5 0.596 0.298 0.394 0.202 95.0
GBGs 0.891 0.887 0.5 0.519 0.307 0.384 0.202 90.1
OSBs 0.899 0.887 1.4 0.608 0.257 0.36 0.202 78.2

Repetition 2
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.895 0.886 1.0 0.548 0.38 0.446 0.203 119.7
bigrams 0.898 0.886 1.4 0.596 0.308 0.402 0.203 98.0
GBGs 0.89 0.886 0.5 0.516 0.305 0.382 0.203 88.2
OSBs 0.897 0.886 1.2 0.605 0.255 0.355 0.203 74.9

Repetition 3
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.896 0.888 0.9 0.539 0.371 0.435 0.201 116.4
bigrams 0.9 0.888 1.4 0.601 0.313 0.404 0.201 101.0
GBGs 0.895 0.888 0.8 0.544 0.32 0.399 0.201 98.5
OSBs 0.898 0.888 1.1 0.592 0.26 0.353 0.201 75.6

Repetition 4
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.896 0.889 0.8 0.537 0.354 0.425 0.199 113.6
bigrams 0.898 0.889 1.0 0.574 0.283 0.376 0.199 88.9
GBGs 0.891 0.889 0.2 0.511 0.31 0.383 0.199 92.5
OSBs 0.898 0.889 1.0 0.587 0.249 0.345 0.199 73.4

Repetition 5
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.896 0.886 1.1 0.561 0.377 0.45 0.204 120.6
bigrams 0.899 0.886 1.5 0.608 0.304 0.404 0.204 98.0
GBGs 0.892 0.886 0.7 0.55 0.321 0.403 0.204 97.5
OSBs 0.899 0.886 1.5 0.629 0.261 0.368 0.204 80.4

Table 4.5: Maximum entropy over posts

The different performance among the three types of bigram experiments shows a few interesting
changes. Experiments using gappy bigrams have decreased precision, while recall remains the
same or slightly increases. Experiments using OSBs have a decreased recall with increased or
unchanged precision. Overall, modified versions of traditional bigrams do not help maximum
entropy for this classification task. This may be due to combining words that are not dependent
on each other to form features. However, gappy bigrams and OSBs may be useful for other
methods that are discussed later in this section.

4.6.2 Naive Bayes
The results of the naive bayes experiments, contained in Table 4.6, show accuracy was slightly
better than the baseline accuracy across all feature types, except bigrams. F-scores for ex-
periments with gappy bigrams were the highest. As compared to unigrams, experiments with
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Repetition 1
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.887 0.887 0.0 0.495 0.401 0.438 0.202 116.8
bigrams 0.881 0.887 -0.7 0.464 0.419 0.437 0.202 116.3
GBGs 0.888 0.887 0.1 0.5 0.462 0.475 0.202 135.1
OSBs 0.894 0.887 0.8 0.537 0.385 0.444 0.202 119.8

Repetition 2
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.888 0.886 0.2 0.504 0.409 0.447 0.203 120.2
bigrams 0.879 0.886 -0.8 0.464 0.431 0.44 0.203 116.7
GBGs 0.89 0.886 0.5 0.516 0.459 0.479 0.203 136.0
OSBs 0.892 0.886 0.7 0.542 0.374 0.433 0.203 113.3

Repetition 3
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.888 0.1 0.499 0.402 0.443 0.201 120.4
bigrams 0.877 0.888 -1.2 0.441 0.412 0.424 0.201 110.9
GBGs 0.889 0.888 0.1 0.498 0.463 0.476 0.201 136.8
OSBs 0.892 0.888 0.5 0.522 0.367 0.428 0.201 112.9

Repetition 4
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.889 0.0 0.489 0.395 0.437 0.199 119.6
bigrams 0.879 0.889 -1.1 0.446 0.405 0.423 0.199 112.6
GBGs 0.891 0.889 0.2 0.504 0.438 0.467 0.199 134.7
OSBs 0.895 0.889 0.7 0.541 0.354 0.425 0.199 113.6

Repetition 5
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.886 0.3 0.511 0.419 0.46 0.204 125.5
bigrams 0.88 0.886 -0.7 0.471 0.419 0.443 0.204 117.2
GBGs 0.89 0.886 0.5 0.518 0.464 0.489 0.204 139.7
OSBs 0.895 0.886 1.0 0.559 0.376 0.449 0.204 120.1

Table 4.6: Naive bayes over posts

bigrams had lower precision, but increased recall. Gappy bigrams experiments showed higher
precision and recall than unigram experiments. OSB experiments had the highest precision but
the lowest recall.

The performance across the three types of bigrams shows a few interesting differences. Experi-
ments using gappy bigrams have increased precision and recall. Experiments using OSBs have
increased recall with decreased precision. Overall, gappy bigrams performed the best of all
feature sets, while OSBs had a similar performance to traditional bigrams. This may be due to
the naive bayes assumption that the occurrence of features is independent. Since the gappy bi-
grams and OSBs were constructed using and inter-word difference of 4 or less, this assumption
is nearer to the truth. This explains the increased precision of both sets of modified bigrams.
The inter-word distance also plays a role in the recall of the modified bigrams. Gappy bigrams
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collapse OSBs with the same word pair into into a single feature, ignoring the inter-word dis-
tance (illustrated in Figure 2.1 and Figure 2.2). The preservation of the inter-word distance is
what allows OSBs classify posts more precisely, but at the cost of recall.

4.6.3 Support Vector Machine
Repetition 1

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.888 0.887 0.1 0.493 0.361 0.414 0.202 105.0
bigrams 0.891 0.887 0.5 0.517 0.341 0.408 0.202 102.0
GBGs 0.895 0.887 0.9 0.547 0.313 0.395 0.202 95.5
OSBs 0.895 0.887 0.9 0.543 0.292 0.377 0.202 86.6

Repetition 2
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.887 0.886 0.1 0.506 0.365 0.42 0.203 106.9
bigrams 0.89 0.886 0.5 0.523 0.344 0.412 0.203 103.0
GBGs 0.894 0.886 0.9 0.552 0.309 0.395 0.203 94.6
OSBs 0.894 0.886 0.9 0.561 0.292 0.381 0.203 87.7

Repetition 3
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.888 0.1 0.497 0.361 0.414 0.201 106.0
bigrams 0.892 0.888 0.5 0.518 0.35 0.411 0.201 104.5
GBGs 0.894 0.888 0.7 0.541 0.325 0.397 0.201 97.5
OSBs 0.894 0.888 0.7 0.545 0.305 0.382 0.201 90.0

Repetition 4
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.889 0.0 0.487 0.346 0.404 0.199 103.0
bigrams 0.89 0.889 0.1 0.501 0.326 0.393 0.199 97.5
GBGs 0.895 0.889 0.7 0.535 0.302 0.382 0.199 92.0
OSBs 0.893 0.889 0.4 0.53 0.276 0.358 0.199 79.9

Repetition 5
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.886 0.886 0.0 0.501 0.358 0.415 0.204 103.4
bigrams 0.892 0.886 0.7 0.535 0.342 0.416 0.204 103.9
GBGs 0.897 0.886 1.2 0.583 0.322 0.414 0.204 102.9
OSBs 0.895 0.886 1.0 0.57 0.295 0.387 0.204 89.7

Table 4.7: Support vector machine over posts

The results of the SVM experiments are shown in Table 4.7 Again, these results show that accu-
racy was slightly better than the baseline accuracy across all feature types, with two exceptions
(unigrams in repetitions 4 and 5). F-scores for experiments with unigrams were the highest
(excepting repetition 5). As compared to unigrams, experiments with all three types of bigrams
had higher precision and lower recall. This decrease in recall caused lower F-scores for all three
types of bigrams.

The different performance among the three types of bigram experiments shows a few interesting

66



trends. Experiments using gappy bigrams and OSBs had higher precision and lower recall
than bigrams. As in the the maximum entropy experiments, this may be due to combining
words that are not dependent on each other to form features. Overall, modified versions of
traditional bigrams do not help SVM for this classification task, as unigram and traditional
bigram experiments had higher F-scores.

4.6.4 Overall Feature Performance
Using unigrams as features produced the highest F-scores for both maximum entropy and sup-
port vector machine experiments. While gappy bigrams produced the highest F-scores for naive
bayes. Since maximum entropy and support vector machines are discriminative approaches,
this is not an unexpected result. Generative models indicate which class is more likely, while
discriminative models indicate which class is most similar. OSBs and gappy bigrams may intro-
duce information that distorts the similarity of the two classes. Surprisingly, all three techniques
resulted in low recall and high precision using OSBs as features. Based on the success of Cor-
mack et al. when classifying SMS messages, blog comments, and emails summary information
[9], it was expected that OSBs would perform much better. However, these results suggest that
OSBs have discriminative power and may be used to cascade a high recall classifier with a high
precision classifier.

4.7 Six-fold Cross-validation with 5 Repetitions over Tiles
The results of the experiments described in section 3.6 using tiles are presented in this section.

4.7.1 Maximum Entropy
Table 4.8 shows the results of the maximum entropy experiments. Accuracy across all three
types of bigrams was slightly better than the baseline accuracy. Unigrams resulted in accuracies
below the baseline with the exception of repetition 5. F-scores for experiments using unigrams
were highest. Experiments with all bigram types had increased precision, but decreased recall.
Gappy bigram experiments showed lower precision and recall than unigram experiments. The
F-scores in this set of experiments suggests that tiles are not useful for this method of machine
learning (see section 4.7.4 for further discussion).

4.7.2 Naive Bayes
The results of the naive bayes experiments are contained in Table 4.9. Accuracy was better than
the baseline accuracy for gappy bigram experiments. Unigram, bigram and OSB experiments
all produced accuracies below the baseline accuracies (excepting OSBs in repetitions 3 and
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Repetition 1
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.579 0.603 -4.0 0.504 0.502 0.488 0.575 -15.1
bigrams 0.62 0.603 2.8 0.549 0.332 0.399 0.575 -30.6
GBGs 0.627 0.603 4.0 0.558 0.41 0.453 0.575 -21.2
OSBs 0.615 0.603 2.0 0.525 0.373 0.418 0.575 -27.3

Repetition 2
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.572 0.587 -2.6 0.497 0.526 0.505 0.592 -14.7
bigrams 0.611 0.587 4.1 0.556 0.335 0.399 0.592 -32.6
GBGs 0.621 0.587 5.8 0.556 0.426 0.466 0.592 -21.3
OSBs 0.617 0.587 5.1 0.554 0.383 0.433 0.592 -26.9

Repetition 3
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.584 0.577 1.2 0.495 0.5 0.492 0.593 -17.0
bigrams 0.612 0.577 6.1 0.565 0.323 0.41 0.593 -30.9
GBGs 0.641 0.577 11.1 0.608 0.43 0.492 0.593 -17.0
OSBs 0.621 0.577 7.6 0.566 0.361 0.437 0.593 -26.3

Repetition 4
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.571 0.591 -3.4 0.475 0.494 0.479 0.588 -18.5
bigrams 0.614 0.591 3.9 0.569 0.312 0.4 0.588 -32.0
GBGs 0.639 0.591 8.1 0.606 0.406 0.479 0.588 -18.5
OSBs 0.622 0.591 5.2 0.573 0.363 0.441 0.588 -25.0

Repetition 5
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.578 0.576 0.3 0.521 0.515 0.517 0.612 -15.5
bigrams 0.599 0.576 4.0 0.609 0.358 0.432 0.612 -29.4
GBGs 0.6 0.576 4.2 0.576 0.444 0.488 0.612 -20.3
OSBs 0.592 0.576 2.8 0.582 0.405 0.452 0.612 -26.1

Table 4.8: Maximum entropy over tiles

4). Gappy bigrams produced the highest precision, while unigrams produced the lowest. Con-
versely, unigrams had the highest recall, while gappy bigrams had the lowest. The overall trend
was increased precision with a decrease in recall. Due to the disparity is the precision-recall
trade off, there is no trend in F-score. All F-score were below the baseline F-score. This set of
results along with the results presented in section 4.7.1 suggest that tiles may not be usable for
any of our machine learning techniques (see section 4.7.4 for further discussion).

4.7.3 Support Vector Machine
Table 4.10 shows the results of the SVM experiments. Accuracy was better than the baseline
accuracy across all feature types in repetitions 3, 4 and 5. F-scores for experiments using gappy
bigrams were highest, with the exception of repetition 3. In comparison to unigram experiments,
all three types of bigram experiments generally had higher precision, but lower recall. This third
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Repetition 1
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.487 0.603 -19.2 0.415 0.728 0.526 0.576 -8.7
bigrams 0.52 0.603 -13.8 0.433 0.687 0.526 0.575 -8.5
GBGs 0.612 0.603 1.5 0.497 0.57 0.52 0.575 -9.6
OSBs 0.563 0.603 -6.6 0.457 0.594 0.508 0.575 -11.7

Repetition 2
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.515 0.587 -12.3 0.445 0.737 0.553 0.592 -6.6
bigrams 0.543 0.587 -7.5 0.456 0.662 0.536 0.592 -9.5
GBGs 0.612 0.587 4.3 0.514 0.615 0.547 0.592 -7.6
OSBs 0.569 0.587 -3.1 0.482 0.622 0.537 0.592 -9.3

Repetition 3
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.518 0.577 -10.2 0.447 0.699 0.541 0.593 -8.8
bigrams 0.552 0.577 -4.3 0.466 0.626 0.529 0.593 -10.8
GBGs 0.619 0.577 7.3 0.537 0.584 0.547 0.593 -7.8
OSBs 0.581 0.577 0.7 0.491 0.598 0.535 0.593 -9.8

Repetition 4
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.517 0.591 -12.5 0.445 0.709 0.546 0.588 -7.1
bigrams 0.548 0.591 -7.3 0.463 0.636 0.534 0.588 -9.2
GBGs 0.619 0.591 4.7 0.532 0.571 0.544 0.588 -7.5
OSBs 0.593 0.591 0.3 0.499 0.611 0.548 0.588 -6.8

Repetition 5
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.507 0.576 -12.0 0.458 0.745 0.565 0.612 -7.7
bigrams 0.539 0.577 -6.6 0.484 0.704 0.571 0.612 -6.7
GBGs 0.605 0.577 4.9 0.548 0.631 0.58 0.612 -5.2
OSBs 0.56 0.577 -2.9 0.502 0.633 0.556 0.612 -9.2

Table 4.9: Naive bayes over tiles

set of results confirms that tiles do not allow any of our machine learning techniques to detect
persuasion (see section 4.7.4 for further discussion).

4.7.4 Performance of TextTiling
Since none of the three machine learning techniques used in this research outperformed the
baseline F-score, TextTiling did not provide a suitable method of segmentation for this classi-
fications task. This is probably due to the fact that the criteria for labeling a post as persuasive
was that it contain one persuasive post. Due to this labeling scheme described in section 3.4,
there is a high probability that persuasive tiles had many of the same features as non-persuasive
tiles. Future research should include an exploration of other segmentation techniques.
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Repetition 1
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.573 0.603 -5.0 0.502 0.433 0.418 0.575 -27.3
bigrams 0.591 0.603 -2.0 0.493 0.397 0.435 0.575 -24.3
GBGs 0.609 0.603 1.0 0.525 0.443 0.473 0.575 -17.7
OSBs 0.599 0.603 -0.7 0.52 0.402 0.443 0.575 -23.0

Repetition 2
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.58 0.587 -1.2 0.525 0.471 0.45 0.592 -24.0
bigrams 0.598 0.587 1.9 0.537 0.423 0.466 0.592 -21.3
GBGs 0.606 0.587 3.2 0.546 0.457 0.491 0.592 -17.1
OSBs 0.601 0.587 2.4 0.55 0.416 0.462 0.592 -22.0

Repetition 3
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.612 0.577 6.1 0.543 0.559 0.542 0.593 -8.6
bigrams 0.601 0.577 4.2 0.537 0.437 0.479 0.593 -19.2
GBGs 0.619 0.577 7.3 0.561 0.468 0.507 0.593 -14.5
OSBs 0.613 0.577 6.2 0.561 0.439 0.487 0.593 -17.9

Repetition 4
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.596 0.591 0.8 0.533 0.501 0.468 0.588 -20.4
bigrams 0.61 0.591 3.2 0.543 0.443 0.482 0.588 -18.0
GBGs 0.621 0.591 5.1 0.56 0.476 0.508 0.588 -13.6
OSBs 0.614 0.591 3.9 0.556 0.431 0.478 0.588 -18.7

Repetition 5
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.576 0.576 0.0 0.539 0.473 0.459 0.612 -25.0
bigrams 0.587 0.576 1.9 0.557 0.419 0.47 0.612 -23.2
GBGs 0.604 0.576 4.9 0.574 0.47 0.51 0.612 -16.7
OSBs 0.603 0.576 4.7 0.587 0.439 0.491 0.612 -19.8

Table 4.10: Support vector machine over tiles
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4.8 Leave-One-Out over Posts
The results presented in section 4.6 indicated that it was possible to train weak classifiers using
posts. In order to validate this belief, it is necessary to review the results of the experiments
conducted using the first method described in section 3.7.

4.8.1 Maximum Entropy
Trained with all, except Rogan (13608 posts, 89.7% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.865 0.85 1.8 0.594 0.334 0.428 0.262 63.4
bigrams 0.873 0.85 2.7 0.701 0.271 0.39 0.262 48.9
GBGs 0.869 0.85 2.2 0.628 0.313 0.417 0.262 59.2
OSBs 0.872 0.85 2.6 0.734 0.235 0.356 0.262 35.9

Trained with all, except Taylor (11944 posts, 89.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.876 0.872 0.5 0.524 0.365 0.43 0.227 89.4
bigrams 0.883 0.872 1.3 0.605 0.237 0.341 0.227 50.2
GBGs 0.877 0.872 0.6 0.539 0.266 0.356 0.227 56.8
OSBs 0.882 0.872 1.1 0.632 0.186 0.288 0.227 26.9

Trained with all, except SDPolice (18033 posts, 88.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.899 0.826 8.8 0.798 0.56 0.658 0.297 121.5
bigrams 0.906 0.826 9.7 0.892 0.525 0.661 0.297 122.6
GBGs 0.884 0.826 7.0 0.797 0.447 0.573 0.297 92.9
OSBs 0.896 0.826 8.5 0.89 0.461 0.607 0.297 104.4

Trained with all, except Waco (12986 post, 86.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.91 0.937 -2.9 0.293 0.296 0.294 0.119 147.1
bigrams 0.918 0.937 -2.0 0.339 0.306 0.322 0.119 170.6
GBGs 0.906 0.937 -3.3 0.286 0.317 0.301 0.119 152.9
OSBs 0.918 0.937 -2.0 0.324 0.266 0.292 0.119 145.4

Table 4.11: Maximum entropy over posts, trained on three of four transcript types

The results of the maximum entropy experiments in Table 4.11 show some important differences
in the behavior of each transcript type. The experiments trained without Rogan and without
Taylor produced similar results. Each set of features performed the same with regards to the
rank order of the results for each metric. In these experiments, the accuracies and F-scores were
higher than the baseline metrics. Both types of experiments showed stronger precision, than
recall.

The experiments trained without using the San Diego Police transcript boasted the highest
scores for each metric. The accuracies exceeded baseline accuracies. This change in per-
formance can mainly be attributed to the small size of the transcript (824 posts, 4.4% of the
corpus).
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Training on all transcripts except Waco produced lower scores for precision, recall and F-score
than the other three types of experiments. None of the experiments in this set outperformed the
baseline accuracy, but they did outperform the baseline F-score. This set of results begins to
suggest that the Waco transcripts are somehow different than the other three transcript types.

4.8.2 Naive Bayes
Trained with all, except Rogan (13608 posts, 89.7% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.854 0.85 0.5 0.52 0.389 0.445 0.262 69.8
bigrams 0.851 0.85 0.1 0.508 0.417 0.458 0.262 74.8
GBGs 0.863 0.85 1.5 0.559 0.418 0.478 0.262 82.4
OSBs 0.858 0.85 0.9 0.553 0.305 0.393 0.262 50.0

Trained with all, except Taylor (11944 posts, 89.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.862 0.872 -1.1 0.453 0.373 0.409 0.227 80.2
bigrams 0.854 0.872 -2.1 0.425 0.399 0.411 0.227 81.1
GBGs 0.869 0.872 -0.3 0.486 0.41 0.445 0.227 96.0
OSBs 0.872 0.872 0.0 0.502 0.348 0.411 0.227 81.1

Trained with all, except SDPolice (18033 posts, 88.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.888 0.826 7.5 0.731 0.56 0.635 0.297 113.8
bigrams 0.885 0.826 7.1 0.773 0.482 0.594 0.297 100.0
GBGs 0.892 0.826 8.0 0.737 0.596 0.659 0.297 121.9
OSBs 0.89 0.826 7.7 0.851 0.447 0.586 0.297 97.3

Trained with all, except Waco (12986 post, 86.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.937 -5.1 0.27 0.444 0.335 0.119 181.5
bigrams 0.865 0.937 -7.7 0.242 0.53 0.332 0.119 179.0
GBGs 0.866 0.937 -7.6 0.244 0.532 0.334 0.119 180.7
OSBs 0.879 0.937 -6.2 0.258 0.481 0.336 0.119 182.4

Table 4.12: Naive bayes over posts, trained on three of four transcript types

Table 4.12 shows the results of the naive bayes experiments, which highlights some differences
between each transcript type. The experiments trained without Rogan and without Taylor pro-
duced similar results. Each set of features performed the same with regards to the rank order of
the results for each metric, except F-score. With regard to F-score, these two sets of experiments
both show gappy bigrams producing the highest F-scores and bigrams the second highest. In
these experiments, the Rogan experiment accuracies exceeded the baseline, while the Taylor ex-
periment accuracies did not. Both sets had F-scores that were higher than the baseline F-scores.
Both types of experiments showed stronger precision, than recall.

The experiments trained without using the San Diego Police transcript boasted the highest
scores for each metric. The accuracies exceeded the baseline accuracies for all experiments.
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Again, this change in performance can mainly be attributed to the small size of the transcript
(824 posts, 4.4% of the corpus).

Training on all transcripts except Waco produced lower scores for precision and F-score than
the other three types of experiments. All experiments in this set had lower accuracies than the
baseline accuracies, but F-scores higher than the baseline F-score. One interesting characteristic
of this set of results is the similarity of the F-scores. This occurred due to similar precision
across all feature sets with minimal change to recall (less than 5%). This set results also suggests
that Waco is different from the other transcript types. If Waco had been similar, we could have
expected more variation across the results from the different feature sets.

4.8.3 Support Vector Machines
Trained with all, except Rogan (13608 posts, 89.7% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.856 0.85 0.7 0.535 0.319 0.4 0.262 52.7
bigrams 0.87 0.85 2.4 0.631 0.325 0.429 0.262 63.7
GBGs 0.873 0.85 2.7 0.67 0.3 0.414 0.262 58.0
OSBs 0.872 0.85 2.6 0.681 0.285 0.401 0.262 53.1

Trained with all, except Taylor (11944 posts, 89.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.87 0.872 -0.2 0.491 0.384 0.431 0.227 89.9
bigrams 0.875 0.872 0.3 0.527 0.269 0.356 0.227 56.8
GBGs 0.882 0.872 1.1 0.587 0.275 0.374 0.227 64.8
OSBs 0.882 0.872 1.1 0.602 0.241 0.344 0.227 51.5

Trained with all, except SDPolice (18033 posts, 88.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.884 0.826 7.0 0.77 0.475 0.588 0.297 98.0
bigrams 0.904 0.826 9.4 0.818 0.574 0.675 0.297 127.3
GBGs 0.899 0.826 8.8 0.839 0.518 0.64 0.297 115.5
OSBs 0.902 0.826 9.2 0.897 0.496 0.639 0.297 115.2

Trained with all, except Waco (12986 post, 86.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.906 0.937 -3.3 0.271 0.285 0.278 0.119 133.6
bigrams 0.904 0.937 -3.5 0.283 0.341 0.31 0.119 160.5
GBGs 0.903 0.937 -3.6 0.264 0.293 0.278 0.119 133.6
OSBs 0.909 0.937 -3.0 0.287 0.296 0.291 0.119 144.5

Table 4.13: Support vector machine over posts, trained on three of four transcript types

SVM produced the results in Table 4.13. The table shows important differences in the tran-
script types. This set of experiments continued the trend than experiments trained by leaving
out San Diego Police performed the best, followed by leaving out Rogan. Leaving out Waco
produces the worst precision, recall and F-score. It is important to note that similarities noted
in section 4.8.1 and section 4.8.2 for the Rogan and Taylor experiments are not present in this
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set of results. This set of result reinforce the claim that the Waco transcripts are different than
the other three types.

4.8.4 Effects of Leave-One-Out for Posts
The results presented in this section suggest that the Rogan transcripts and the Taylor transcripts
are similar with regard to post-level persuasion. Due to the difference in performance from
the other three types of experiments, there is reason to believe that the Waco transcripts are
significantly different at the post level than the other three types of transcripts. In the next
section, we discuss the results for the same experiments using tiles.

4.9 Leave-One-Out over Tiles
The results presented in section 4.7 suggested that using tiles did not learn any signal that
indicated persuasion. In order to validate this observation, it is necessary to review the results
of the experiments conducted using the first method described in section 3.7.

4.9.1 Maximum Entropy
Trained with all, except Rogan (1195 tiles, 55.8% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.591 0.516 14.5 0.61 0.429 0.503 0.652 -22.9
bigrams 0.541 0.516 4.8 0.542 0.329 0.41 0.652 -37.1
GBGs 0.578 0.516 12.0 0.59 0.417 0.488 0.652 -25.2
OSBs 0.557 0.516 7.9 0.561 0.381 0.454 0.652 -30.4

Trained with all, except Taylor (1052 tiles, 59.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.542 0.53 2.3 0.603 0.401 0.481 0.693 -30.6
bigrams 0.515 0.53 -2.8 0.606 0.244 0.348 0.693 -49.8
GBGs 0.515 0.53 -2.8 0.57 0.347 0.431 0.693 -37.8
OSBs 0.515 0.53 -2.8 0.606 0.244 0.348 0.693 -49.8

Trained with all, except SDPolice (1638 tiles, 54.8% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.628 0.513 22.4 0.634 0.65 0.642 0.678 -5.3
bigrams 0.603 0.513 17.5 0.68 0.425 0.523 0.678 -22.9
GBGs 0.577 0.513 12.5 0.64 0.4 0.492 0.678 -27.4
OSBs 0.615 0.513 19.9 0.75 0.375 0.5 0.678 -26.3

Trained with all, except Waco (1263 tiles, 49.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.581 0.7 -17.0 0.341 0.426 0.379 0.462 -18.0
bigrams 0.521 0.7 -25.6 0.329 0.574 0.418 0.462 -9.5
GBGs 0.525 0.7 -25.0 0.333 0.581 0.424 0.462 -8.2
OSBs 0.446 0.7 -36.3 0.309 0.684 0.426 0.462 -7.8

Table 4.14: Maximum entropy over tiles, trained on three of four transcript types
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Table 4.14 shows the results of maximum entropy over tiles. The experiments trained without
Rogan and without Taylor produced similar results when using unigrams as features. The uni-
gram experiments for these two sets produced the highest accuracy, recall, and F-score within
each set. In the Rogan set, unigrams produced the highest precision. While in the Taylor set,
unigrams resulted in the second highest precision, but within .003 of the highest precision.
Interestingly, in the Taylor set of experiments, bigrams and OSBs have exactly the same results.

The experiments trained without using the San Diego Police transcript boasted the highest
scores for each metric within each type of feature. The accuracies exceeded the the baseline
accuracies for each set of features. This change in performance can mainly be attributed to the
small size of the transcript(78 tiles, 4.5% of the corpus).

Within the Waco set, the lowest F-scores occur in the experiment using unigrams, while the
highest occurs in the experiment using OSBs. This is opposite of the trends for the other sets
of experiments. Since all F-scores are below the baseline F-scores, it is clear that tiles did not
help maximum entropy to detect persuasion. Due to this fact it is unclear if any conclusion can
be drawn about the different transcript types.

4.9.2 Naive Bayes
In the results of the experiments shown in Table 4.15, the experiments trained without Rogan
unigrams resulted in the highest F-score and recall, while gappy bigrams resulted in the high-
est accuracy and precision. In the Taylor set, gappy bigrams produced the highest accuracy,
precision, and F-score. Bigrams produced the highest recall.

In other sets of experiments, leaving out the San Diego transcript has dramatically, improved all
metrics. However, this not the case in this experiments despite the small size of the transcript(78
tiles, 4.5% of the corpus). Additionally, in this set, gappy bigrams and OSBs resulted in the
same accuracies, but different recall and precision. The Waco set generally produced the lowest
accuracy, precision, and F-score for each feature set, but the highest recall for each feature set,
except unigrams. Once again, all F-scores are below the baseline F-scores. Clearly, tiles did
not help naive bayes to successfully detect persuasion. Due to this fact no conclusions can be
drawn about the different transcript types from these results.

4.9.3 Support Vector Machine
The SVM experiment results are contained in Table 4.16. The experiments trained without
Rogan using unigrams resulted in the highest scores across all metrics. Bigrams resulted in the
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Trained with all, except Rogan (1195 tiles, 55.8% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.522 0.516 1.2 0.503 0.869 0.638 0.652 -2.1
bigrams 0.52 0.516 0.8 0.502 0.845 0.63 0.652 -3.4
GBGs 0.568 0.516 10.1 0.538 0.754 0.628 0.652 -3.7
OSBs 0.547 0.516 6.0 0.522 0.758 0.618 0.652 -5.2

Trained with all, except Taylor (1052 tiles, 59.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.473 0.53 -10.8 0.503 0.474 0.488 0.693 -29.6
bigrams 0.498 0.53 -6.0 0.528 0.514 0.521 0.693 -24.8
GBGs 0.565 0.53 6.6 0.609 0.5 0.549 0.693 -20.8
OSBs 0.529 0.53 -0.2 0.587 0.375 0.458 0.693 -33.9

Trained with all, except SDPolice (1638 tiles, 54.8% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.526 0.513 2.5 0.523 0.85 0.648 0.678 -4.4
bigrams 0.5 0.513 -2.5 0.509 0.725 0.598 0.678 -11.8
GBGs 0.577 0.513 12.5 0.59 0.575 0.582 0.678 -14.2
OSBs 0.577 0.513 12.5 0.569 0.725 0.637 0.678 -6.0

Trained with all, except Waco (1263 tiles, 49.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.373 0.7 -46.7 0.285 0.721 0.408 0.462 -11.7
bigrams 0.347 0.7 -50.4 0.296 0.853 0.439 0.462 -5.0
GBGs 0.444 0.7 -36.6 0.326 0.801 0.464 0.462 0.4
OSBs 0.338 0.7 -51.7 0.301 0.912 0.453 0.462 -1.9

Table 4.15: Naive bayes over tiles, trained on three of four transcript types

lowest accuracy and precision, while OSBs resulted in the lowest recall and F-score. In the
Taylor set, OSBs produced the highest accuracy and F-score. Bigrams produced the highest
recall, while unigrams produced the highest precision.

In other sets of experiments, leaving out the San Diego transcript has dramatically, improved all
metrics. However, this not the case in this experiments despite the small size of the transcript
(78 tiles, 4.5% of the corpus). Additionally, in this set, gappy bigrams and OSBs resulted in
the same accuracies, but different recall and precision. This was also seen in results presented
in section 4.9.2. The Waco set generally produced the lowest precision, but the highest recall
for each feature set. This set of results provided still more evidence that tiles did not help to
successfully detect persuasion. This being the case, no conclusions can be drawn about the
different transcript types from these results.

4.9.4 Performance of TextTiling
Since only three experiments outperformed the baseline F-score, TextTiling did not provide a
suitable method of segmentation for this classifications task. This set of experiments reiforced
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Trained with all, except Rogan (1195 tiles, 55.8% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.626 0.516 21.3 0.626 0.563 0.593 0.652 -9.0
bigrams 0.566 0.516 9.7 0.57 0.421 0.484 0.652 -25.8
GBGs 0.572 0.516 10.9 0.588 0.385 0.465 0.652 -28.7
OSBs 0.578 0.516 12.0 0.604 0.369 0.458 0.652 -29.8

Trained with all, except Taylor (1052 tiles, 59.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.474 0.53 -10.6 0.714 0.014 0.028 0.693 -96.0
bigrams 0.532 0.53 0.4 0.613 0.315 0.417 0.693 -39.8
GBGs 0.524 0.53 -1.1 0.607 0.29 0.392 0.693 -43.4
OSBs 0.536 0.53 1.1 0.639 0.287 0.396 0.693 -42.9

Trained with all, except SDPolice (1638 tiles, 54.8% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.551 0.513 7.4 0.561 0.575 0.568 0.678 -16.2
bigrams 0.513 0.513 0.0 0.526 0.5 0.513 0.678 -24.3
GBGs 0.564 0.513 9.9 0.579 0.55 0.564 0.678 -16.8
OSBs 0.564 0.513 9.9 0.583 0.525 0.553 0.678 -18.4

Trained with all, except Waco (1263 tiles, 49.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.558 0.7 -20.3 0.371 0.676 0.479 0.462 3.7
bigrams 0.581 0.7 -17.0 0.376 0.603 0.463 0.462 0.2
GBGs 0.567 0.7 -19.0 0.371 0.632 0.467 0.462 1.1
OSBs 0.57 0.7 -18.6 0.364 0.581 0.448 0.462 -3.0

Table 4.16: Support vector machine over tiles, trained on three of four transcript types

the conclusions in section 4.7.4, by showing that the poor results generalize to this set of exper-
iments.

4.10 Leave-One-In over Posts
The results presented in section 4.8 validated that it is possible to train weak classifiers to
recognize persuasion in posts. A review of the results of the experiments conducted using the
second method described in section 3.7 reinforced this claim.

4.10.1 Maximum Entropy
The set of results shown in Table 4.17 were produced by experiments using maximum entropy.
They illustrate differences between the different transcript types. The experiments trained with
only Rogan and with only Taylor produced similar results. Each set of features performed the
same with regards to the rank order of the results for each metric. In these experiments, the
accuracies were within one a 1% change of the baseline accuracies. Both types of experiments
showed stronger precision, than recall.
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Trained with only Rogan (5249 posts, 85.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.897 -0.9 0.458 0.42 0.438 0.187 134.2
bigrams 0.899 0.897 0.2 0.515 0.263 0.348 0.187 86.1
GBGs 0.892 0.897 -0.6 0.465 0.305 0.369 0.187 97.3
OSBs 0.902 0.897 0.6 0.559 0.216 0.312 0.187 66.8

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.886 0.891 -0.6 0.473 0.366 0.413 0.197 109.6
bigrams 0.896 0.891 0.6 0.551 0.272 0.365 0.197 85.3
GBGs 0.892 0.891 0.1 0.509 0.308 0.384 0.197 94.9
OSBs 0.898 0.891 0.8 0.581 0.242 0.341 0.197 73.1

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.875 0.887 -1.4 0.438 0.364 0.397 0.204 94.6
bigrams 0.89 0.887 0.3 0.599 0.085 0.148 0.204 -27.5
GBGs 0.888 0.887 0.1 0.524 0.161 0.247 0.204 21.1
OSBs 0.889 0.887 0.2 0.621 0.064 0.116 0.204 -43.1

Trained with only Waco (5871 posts, 93.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.865 0.86 0.6 0.554 0.195 0.288 0.246 17.1
bigrams 0.868 0.86 0.9 0.744 0.087 0.155 0.246 -37.0
GBGs 0.865 0.86 0.6 0.611 0.106 0.181 0.246 -26.4
OSBs 0.865 0.86 0.6 0.766 0.054 0.101 0.246 -58.9

Table 4.17: Maximum entropy over posts, trained on one of four transcript types

The experiments trained with only using the San Diego Police transcript resulted in lower F-
scores than the Taylor and Rogan sets across all features. This was due to decreased recall across
all feature sets, while precision remained relatively the same or increased. This was an expected
result due to the small size of the training set. Training on only Waco produced the lowest F-
scores across each feature set, except for bigrams, which was the second lowest F-score. This
set of experiments provides still more evidence that the Waco transcripts are different than the
others.

4.10.2 Naive Bayes
Table 4.18 contains the results of the naive bayes experiments. The experiments trained without
Rogan unigrams resulted in the highest F-score and recall and the second highest accuracy and
precision. In the Taylor set, gappy bigrams produced the highest precision, recall, and F-score
and the second highest accuracy. While gappy bigrams resulted in higher scores for all metrics,
these two sets of experiments were not as similar as previous sets. The experiments trained
only using the San Diego Police transcript produce results similar to the Rogan and Taylor
experiments. The Waco set generally produced the lowest F-score for each feature set. These

78



Trained with only Rogan (5249 posts, 85.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.872 0.897 -2.8 0.384 0.399 0.392 0.187 109.6
bigrams 0.845 0.897 -5.8 0.329 0.487 0.393 0.187 110.2
GBGs 0.859 0.897 -4.2 0.373 0.541 0.442 0.187 136.4
OSBs 0.857 0.897 -4.5 0.364 0.521 0.428 0.187 128.9

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.877 0.891 -1.6 0.426 0.366 0.394 0.197 100.0
bigrams 0.856 0.891 -3.9 0.359 0.402 0.379 0.197 92.4
GBGs 0.878 0.891 -1.5 0.436 0.415 0.426 0.197 116.2
OSBs 0.879 0.891 -1.3 0.433 0.348 0.386 0.197 95.9

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.843 0.887 -5.0 0.348 0.442 0.39 0.204 91.2
bigrams 0.814 0.887 -8.2 0.312 0.535 0.394 0.204 93.1
GBGs 0.824 0.887 -7.1 0.339 0.578 0.427 0.204 109.3
OSBs 0.803 0.887 -9.5 0.311 0.61 0.412 0.204 102.0

Trained with only Waco (5871 posts, 93.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.856 0.86 -0.5 0.461 0.175 0.254 0.246 3.3
bigrams 0.84 0.86 -2.3 0.292 0.101 0.15 0.246 -39.0
GBGs 0.856 0.86 -0.5 0.368 0.045 0.08 0.246 -67.5
OSBs 0.851 0.86 -1.0 0.335 0.065 0.108 0.246 -56.1

Table 4.18: Naive bayes over posts, trained on one of four transcript types

results contain trend similar to the previous set of results and further reinforce that the Waco
transcripts are sufficiently different from the other three types of transcripts.

4.10.3 Support Vector Machine
In the results of the SVM experiments are shown in Table 4.19. The experiments trained with
only Rogan and with only Taylor produced similar results. Each set of features performed
generally the same with regards to the rank order of the results for accuracy, precision, and
recall. In these experiments, the F-scores were higher than the baseline F-scores. Both types of
experiments showed stronger precision, than recall.

The experiments trained with only using the San Diego Police transcript resulted in lower F-
scores than the Taylor and Rogan sets across all features. Training on only Waco produced the
lowest F-scores across each feature set. This is surprising given the size of the training set.

4.10.4 Effects of Leave-One-In on Posts
The results in this section reinforce the claim that the Rogan and Taylor sets are similar since
they exhibited similar results when used as training data. Not surprisingly, the San Diego Po-
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Trained with only Rogan (5249 posts, 85.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.88 0.897 -1.9 0.416 0.418 0.417 0.187 123.0
bigrams 0.887 0.897 -1.1 0.432 0.323 0.37 0.187 97.9
GBGs 0.895 0.897 -0.2 0.482 0.327 0.39 0.187 108.6
OSBs 0.896 0.897 -0.1 0.49 0.295 0.369 0.187 97.3

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.881 0.891 -1.1 0.442 0.36 0.397 0.197 101.5
bigrams 0.889 0.891 -0.2 0.49 0.341 0.402 0.197 104.1
GBGs 0.894 0.891 0.3 0.52 0.337 0.409 0.197 107.6
OSBs 0.894 0.891 0.3 0.526 0.306 0.387 0.197 96.4

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.851 0.887 -4.1 0.358 0.402 0.379 0.204 85.8
bigrams 0.886 0.887 -0.1 0.497 0.216 0.301 0.204 47.5
GBGs 0.888 0.887 0.1 0.518 0.237 0.325 0.204 59.3
OSBs 0.889 0.887 0.2 0.528 0.19 0.279 0.204 36.8

Trained with only Waco (5871 posts, 93.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.86 0.86 0.0 0.499 0.234 0.318 0.246 29.3
bigrams 0.866 0.86 0.7 0.616 0.108 0.184 0.246 -25.2
GBGs 0.867 0.86 0.8 0.669 0.104 0.18 0.246 -26.8
OSBs 0.868 0.86 0.9 0.741 0.087 0.155 0.246 -37.0

Table 4.19: Support vector machine over posts, trained on one of four transcript types

lice experiments produced worse results than the Rogan and Taylor experiments for maximum
entropy and support vector machine. This change in performance can mainly be attributed to
the small size of the transcript(824 posts, 4.4% of the corpus).

However, for naive bayes, the San Diego experiments performed comparably with the Rogan
and Taylor experiments. This can also be attributed to the small training set. Ng and Jordan
proved that generative models, like naive bayes, reach their asymptotic error more quickly, than
discriminative models [34]. Discriminative models, such as maximum entropy and support
vector machine, outperform generative models for larger data sets. The fact that recall and
precision are the same for a small data set suggests that there are certain lexical features that are
strong indicators of persuasions.

Again, the Waco experiments produced significantly different results than the other experi-
ments. This further reinforces the hypothesis that the Waco transcripts are significantly different
from the other three types.
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4.11 Leave-One-In over Tiles
The results presented in section 4.9 exhibited the same trends as in section 4.7. The results
of the experiments conducted using the second method described in section 3.7 continued to
strengthen the claim that no signal is learned when using tiles.

4.11.1 Maximum Entropy

Trained with only Rogan (521 tiles, 51.6% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.527 0.558 -5.6 0.46 0.398 0.426 0.613 -30.5
bigrams 0.502 0.558 -10.0 0.452 0.598 0.515 0.613 -16.0
GBGs 0.515 0.558 -7.7 0.461 0.576 0.512 0.613 -16.5
OSBs 0.488 0.558 -12.5 0.45 0.708 0.55 0.613 -10.3

Trained with only Taylor (664 tiles, 47.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.573 0.593 -3.4 0.472 0.409 0.438 0.578 -24.2
bigrams 0.501 0.593 -15.5 0.429 0.685 0.527 0.578 -8.8
GBGs 0.482 0.593 -18.7 0.427 0.794 0.555 0.578 -4.0
OSBs 0.436 0.593 -26.5 0.413 0.921 0.571 0.578 -1.2

Trained with only SDPolice (78 tiles, 48.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.53 0.548 -3.3 0.482 0.546 0.512 0.622 -17.7
bigrams 0.493 0.548 -10.0 0.467 0.857 0.604 0.622 -2.9
GBGs 0.501 0.548 -8.6 0.472 0.884 0.615 0.622 -1.1
OSBs 0.475 0.548 -13.3 0.46 0.942 0.618 0.622 -0.6

Trained with only Waco (453 tiles, 70% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.515 0.51 1.0 0.534 0.379 0.443 0.675 -34.4
bigrams 0.49 0.51 -3.9 0.5 0.005 0.009 0.675 -98.7
GBGs 0.489 0.51 -4.1 0.4 0.003 0.006 0.675 -99.1
OSBs 0.49 0.51 -3.9 0.0 0.0 0.0 0.675 -100.0

Table 4.20: Maximum entropy over tiles, trained on one of four transcript types

Table 4.20 shows the results of the maximum entropy experiments. OSBs produced the best
F-scores for the Rogan, Taylor and San Diego Police experiments, while unigrams produced
the lowest F-score. The performance of the other two types of bigrams were similar to OSBs.
The disparity in performance among the features can be explained by the parameter values
for λ. The unigram experiments had a small λ value (2−7), while the three types of bigram
experiments had larger λ values (28 or 210). The Waco experiments classified nearly all tiles as
not persuasive, with the exception of the unigram experiment. Again, this can be explained by
the difference in λ values. The poor performance of all experiments continues to reinforce the
ineffectiveness of tiles for this classification task.
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Trained with only Rogan (521 tiles, 51.6% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.481 0.558 -13.8 0.426 0.5 0.46 0.613 -25.0
bigrams 0.505 0.558 -9.5 0.463 0.756 0.575 0.613 -6.2
GBGs 0.529 0.558 -5.2 0.476 0.646 0.548 0.613 -10.6
OSBs 0.513 0.558 -8.1 0.467 0.733 0.571 0.613 -6.9

Trained with only Taylor (664 tiles, 47.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.434 0.593 -26.8 0.408 0.862 0.554 0.578 -4.2
bigrams 0.446 0.593 -24.8 0.416 0.895 0.568 0.578 -1.7
GBGs 0.457 0.593 -22.9 0.417 0.841 0.558 0.578 -3.5
OSBs 0.419 0.593 -29.3 0.409 0.958 0.573 0.578 -0.9

Trained with only SDPolice (78 tiles, 48.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.462 0.548 -15.7 0.452 0.905 0.603 0.622 -3.1
bigrams 0.464 0.548 -15.3 0.453 0.904 0.604 0.622 -2.9
GBGs 0.488 0.548 -10.9 0.465 0.892 0.611 0.622 -1.8
OSBs 0.471 0.548 -14.1 0.458 0.926 0.612 0.622 -1.6

Trained with only Waco (453 tiles, 70% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.465 0.51 -8.8 0.468 0.363 0.409 0.675 -39.4
bigrams 0.479 0.51 -6.1 0.469 0.166 0.245 0.675 -63.7
GBGs 0.496 0.51 -2.7 0.585 0.037 0.07 0.675 -89.6
OSBs 0.488 0.51 -4.3 0.452 0.022 0.041 0.675 -93.9

Table 4.21: Naive bayes over tiles, trained on one of four transcript types

4.11.2 Naive Bayes
The results of the naive bayes experiments are shown in Table 4.21, bigrams produced the best
F-scores for the Rogan experiments. The Taylor and San Diego Police experiments showed their
highest F-score when using OSBs. The Waco experiments exhibited a maximum F-score when
using unigrams. The Taylor and San Diego experiments often called all tiles persuasive, result-
ing in higher recall with precision very similar to accuracy. The Rogan experiments showed the
same trend, but less extreme. The Waco experiments showed the opposite trend, predicting not
persuasive for most tiles. Yet, again, tiles continued to be ineffective.

4.11.3 Support Vector Machine
Table 4.22 shows the results of the SVM experiments. Unigrams produced the best F-scores
for the Rogan, Taylor and San Diego Police experiments. Bigrams produced the lowest F-
scores for the Taylor and San Diego experiments, and the second lowest F-score for the Rogan
experiments. The Waco experiments classified all tiles as not persuasive, with the exception of
the bigram experiment where a few classified as persuasive.
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Trained with only Rogan (521 tiles, 51.6% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.573 0.558 2.7 0.515 0.589 0.549 0.613 -10.4
bigrams 0.572 0.558 2.5 0.515 0.519 0.517 0.613 -15.7
GBGs 0.573 0.558 2.7 0.516 0.547 0.531 0.613 -13.4
OSBs 0.57 0.558 2.2 0.513 0.511 0.512 0.613 -16.5

Trained with only Taylor (664 tiles, 47.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.548 0.593 -7.6 0.466 0.764 0.579 0.578 0.2
bigrams 0.571 0.593 -3.7 0.48 0.638 0.548 0.578 -5.2
GBGs 0.544 0.593 -8.3 0.46 0.694 0.553 0.578 -4.3
OSBs 0.564 0.593 -4.9 0.475 0.692 0.563 0.578 -2.6

Trained with only SDPolice (78 tiles, 48.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.452 0.548 -17.5 0.452 1.0 0.622 0.622 0.0
bigrams 0.57 0.548 4.0 0.523 0.549 0.535 0.622 -14.0
GBGs 0.559 0.548 2.0 0.51 0.63 0.563 0.622 -9.5
OSBs 0.56 0.548 2.2 0.511 0.641 0.568 0.622 -8.7

Trained with only Waco (453 tiles, 70% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.49 0.51 -3.9 0.0 0.0 0.0 0.675 -100.0
bigrams 0.492 0.51 -3.5 0.75 0.005 0.009 0.675 -98.7
GBGs 0.49 0.51 -3.9 0.0 0.0 0.0 0.675 -100.0
OSBs 0.49 0.51 -3.9 0.0 0.0 0.0 0.675 -100.0

Table 4.22: Support vector machine over tiles, trained on one of four transcript types

4.11.4 Performance of TextTiling
The results in this section continued to verify the poor performance of tiles for this class. There
are no new conclusions that can be drawn from this set of experiments.

4.12 Leave-One-Out over Posts without Waco
All results from experiments using posts indicated that the Waco transcripts are sufficiently
different from the other three types of transcripts. In order to investigate this claim, the ex-
periments described in section 3.7 were repeated without including the Waco transcripts. The
results of the leave-one-out experiments are presented in this section.

4.12.1 Maximum Entropy
The results of maximum entropy experiments are contained in Table 4.23. The experiments
trained without Rogan and without Taylor produced similar results. Each set of features per-
formed the same with regards to the rank order of the results for each metric. Both types of
experiments showed stronger precision, than recall. The experiments trained without using the
San Diego Police transcript resulted in the highest scores for each metric.
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Trained with all, except Rogan (7737 posts, 86.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.865 0.85 1.8 0.58 0.379 0.458 0.262 74.8
bigrams 0.869 0.85 2.2 0.656 0.272 0.385 0.262 46.9
GBGs 0.868 0.85 2.1 0.617 0.328 0.428 0.262 63.4
OSBs 0.874 0.85 2.8 0.721 0.263 0.385 0.262 46.9

Trained with all, except Taylor (6073 posts, 84.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.875 0.872 0.3 0.516 0.411 0.458 0.227 101.8
bigrams 0.882 0.872 1.1 0.587 0.251 0.352 0.227 55.1
GBGs 0.878 0.872 0.7 0.543 0.298 0.385 0.227 69.6
OSBs 0.881 0.872 1.0 0.599 0.205 0.305 0.227 34.4

Trained with all, except SDPolice (12162 posts, 86.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.897 0.82 9.4 0.774 0.582 0.664 0.297 123.6
bigrams 0.905 0.82 10.4 0.848 0.553 0.67 0.297 125.6
GBGs 0.895 0.82 9.1 0.804 0.525 0.635 0.297 113.8
OSBs 0.897 0.82 9.4 0.872 0.482 0.621 0.297 109.1

Table 4.23: Maximum entropy over posts, trained on two of three transcript types (Waco not included)

4.12.2 Naive Bayes
Trained with all, except Rogan (7737 posts, 86.7% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.857 0.85 0.8 0.538 0.352 0.425 0.262 62.2
bigrams 0.839 0.85 -1.3 0.464 0.449 0.456 0.262 74.0
GBGs 0.859 0.85 1.1 0.533 0.488 0.509 0.262 94.3
OSBs 0.859 0.85 1.1 0.539 0.426 0.476 0.262 81.7

Trained with all, except Taylor (6073 posts, 84.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.862 0.872 -1.1 0.453 0.374 0.41 0.227 80.6
bigrams 0.841 0.872 -3.6 0.403 0.508 0.45 0.227 98.2
GBGs 0.851 0.872 -2.4 0.436 0.562 0.491 0.227 116.3
OSBs 0.852 0.872 -2.3 0.437 0.547 0.486 0.227 114.1

Trained with all, except SDPolice (12162 posts, 86.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.902 0.826 9.2 0.777 0.617 0.688 0.297 131.6
bigrams 0.889 0.826 7.6 0.711 0.61 0.656 0.297 120.9
GBGs 0.91 0.826 10.2 0.743 0.738 0.74 0.297 149.2
OSBs 0.904 0.826 9.4 0.769 0.638 0.698 0.297 135.0

Table 4.24: Naive bayes over posts, trained on two of three transcript types (Waco not included)

Table 4.24 shows the results of the naive bayes experiments. The experiments trained without
Rogan and without Taylor produced similar results. Each set of features performed the same
with regards to the rank order of F-scores. The Rogan experiments showed stronger precision,
than recall. The reverse was true for the Taylor experiments. The experiments trained without
using the San Diego Police transcript boasted the highest scores for each metric.
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4.12.3 Support Vector Machine

Trained with all, except Rogan (7737 posts, 86.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.843 0.85 -0.8 0.471 0.351 0.402 0.262 53.4
bigrams 0.865 0.85 1.8 0.586 0.351 0.439 0.262 67.6
GBGs 0.871 0.85 2.5 0.631 0.343 0.444 0.262 69.5
OSBs 0.871 0.85 2.5 0.641 0.324 0.43 0.262 64.1

Trained with all, except Taylor (6073 posts, 84.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.866 0.872 -0.7 0.473 0.407 0.437 0.227 92.5
bigrams 0.876 0.872 0.5 0.526 0.337 0.41 0.227 80.6
GBGs 0.882 0.872 1.1 0.569 0.33 0.418 0.227 84.1
OSBs 0.882 0.872 1.1 0.573 0.292 0.387 0.227 70.5

Trained with all, except SDPolice (12162 posts, 86.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.894 0.826 8.2 0.767 0.56 0.648 0.297 118.2
bigrams 0.906 0.826 9.7 0.798 0.617 0.696 0.297 134.3
GBGs 0.912 0.826 10.4 0.85 0.603 0.705 0.297 137.4
OSBs 0.896 0.826 8.5 0.806 0.532 0.641 0.297 115.8

Table 4.25: Support vector machine over posts, trained on two of three transcript types (Waco not included)

In the set of experiments shown in Table 4.25, the trend that experiments training by leaving
out San Diego Police, performed the best, followed by leaving out Rogan, continued. The
experiments trained without Rogan and without Taylor produced similar results. Each set of
features performed the same with regards to the rank order of the results for accuracy, precision,
and recall.

4.12.4 Effects of Eliminating Waco for Posts
In general, each set of experiments produced a decrease in precision with an increase in re-
call. However, these changes were not as significant as we anticipated. While most F-scores
increased by more than .01, several had less than a .01 change and one F-score decreased by
more than .01. The next section presents of these same experiments, conducted using tiles.

4.13 Leave-One-Out over Tiles without Waco
All results from experiments using tiles indicated that no signal for persuasion was learned. In
order to full investigate this claim, it is necessary to verify that this is not caused by the Waco
transcript set. This was accomplished by repeating the experiments described in section 3.7.
The results of these experiments are presented in this section.
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Trained with all, except Rogan (742 tiles, 47.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.56 0.516 8.5 0.55 0.5 0.524 0.652 -19.6
bigrams 0.518 0.516 0.4 0.501 0.726 0.593 0.652 -9.0
GBGs 0.518 0.516 0.4 0.501 0.817 0.621 0.652 -4.8
OSBs 0.509 0.516 -1.4 0.496 0.921 0.644 0.652 -1.2

Trained with all, except Taylor (599 tiles, 51.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.523 0.507 3.2 0.56 0.463 0.507 0.693 -26.8
bigrams 0.545 0.507 7.5 0.564 0.622 0.592 0.693 -14.6
GBGs 0.547 0.507 7.9 0.561 0.67 0.611 0.693 -11.8
OSBs 0.523 0.507 3.2 0.534 0.778 0.634 0.693 -8.5

Trained with all, except SDPolice (1185 tiles, 49.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.59 0.513 15.0 0.6 0.6 0.6 0.678 -11.5
bigrams 0.641 0.513 25.0 0.62 0.775 0.689 0.678 1.6
GBGs 0.59 0.513 15.0 0.58 0.725 0.644 0.678 -5.0
OSBs 0.603 0.513 17.5 0.574 0.875 0.693 0.678 2.2

Table 4.26: Maximum entropy over tiles, trained on two of three transcript types (Waco not included)

4.13.1 Maximum Entropy
Table 4.26 contains the results of the maximum entropy experiments. The experiments trained
without Rogan and without Taylor produced similar results when using OSBs as features, but
not other feature sets. The experiments trained without using the San Diego Police transcript
resulted in the highest scores for each metric within each type of feature.

4.13.2 Naive Bayes
The results of the naive bayes experiments are shown in Table 4.27 The experiments trained
without Rogan and without Taylor produced similar results. Each set of features performed the
same with regards to the rank order of the results for each metric. Both types of experiments
showed stronger recall, than precision. The experiments trained without using the San Diego
Police transcript resulted in the highest scores for each metric.

4.13.3 Support Vector Machine
The results of the SVM experiments are contained in Table 4.28. The experiments trained
without Rogan and without Taylor produced similar results. However, the San Diego Police
experiments did not produce significantly better results despite the fact that most of the data
was used for training.
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Trained with all, except Rogan (742 tiles, 47.2% not persuasive
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.47 0.516 -8.9 0.474 0.853 0.609 0.652 -6.6
bigrams 0.493 0.516 -4.5 0.487 0.921 0.637 0.652 -2.3
GBGs 0.501 0.516 -2.9 0.491 0.889 0.633 0.652 -2.9
OSBs 0.497 0.516 -3.7 0.49 0.968 0.651 0.652 -0.2

Trained with all, except Taylor (599 tiles, 51.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.486 0.53 -8.3 0.515 0.545 0.53 0.693 -23.5
bigrams 0.511 0.53 -3.6 0.525 0.807 0.636 0.693 -8.2
GBGs 0.541 0.53 2.1 0.548 0.767 0.639 0.693 -7.8
OSBs 0.53 0.53 0.0 0.536 0.838 0.654 0.693 -5.6

Trained with all, except SDPolice (1185 tiles, 49.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.551 0.513 7.4 0.537 0.9 0.673 0.678 -0.7
bigrams 0.538 0.513 4.9 0.529 0.925 0.673 0.678 -0.7
GBGs 0.603 0.513 17.5 0.569 0.925 0.705 0.678 4.0
OSBs 0.474 0.513 -7.6 0.493 0.9 0.637 0.678 -6.0

Table 4.27: Naive bayes over tiles, trained on two of three transcript types (Waco not included)

Trained with all, except Rogan (742 tiles, 47.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.572 0.516 10.9 0.541 0.762 0.633 0.652 -2.9
bigrams 0.562 0.516 8.9 0.542 0.611 0.575 0.652 -11.8
GBGs 0.547 0.516 6.0 0.524 0.69 0.596 0.652 -8.6
OSBs 0.562 0.516 8.9 0.538 0.679 0.6 0.652 -8.0

Trained with all, except Taylor (599 tiles, 51.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.569 0.53 7.4 0.589 0.622 0.605 0.693 -12.7
bigrams 0.562 0.53 6.0 0.603 0.506 0.55 0.693 -20.6
GBGs 0.557 0.53 5.1 0.588 0.551 0.569 0.693 -17.9
OSBs 0.553 0.53 4.3 0.59 0.514 0.549 0.693 -20.8

Trained with all, except SDPolice (1185 tiles, 49.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.538 0.513 4.9 0.54 0.675 0.6 0.678 -11.5
bigrams 0.564 0.513 9.9 0.568 0.625 0.595 0.678 -12.2
GBGs 0.564 0.513 9.9 0.565 0.65 0.605 0.678 -10.8
OSBs 0.5 0.513 -2.5 0.511 0.6 0.552 0.678 -18.6

Table 4.28: Support vector machine over tiles, trained on two of three transcript types (Waco not included)

4.13.4 Effects of Eliminating Waco for Tiles
In general, each set of experiments produced a decrease in precision with an increase in re-
call. However, these changes were not as significant as we anticipated. While most F-scores
increased by more than .01, several had less than a .01 change and three F-scores decreased
by more than .01. Additionally, the changes in the results for the two discriminative methods
where more significant than the changes for naive bayes. However, since only two experiments
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outperformed the baseline F-score, the significance of these observations is unclear. The only
new conclusion that can be drawn from this set of experiments is that the Waco transcripts were
not the source of the poor performance of tiles.

4.14 Leave-One-In over Posts without Waco
Section 4.12 contains results that reinforced the claim that the Waco transcripts are sufficiently
different from the other three types of transcripts. It was possible to verify this claim further by
repeating the leave-one-in experiments described section 3.7 without the Waco transcripts. The
results of these experiments are presented in this section.

4.14.1 Maximum Entropy
Trained with only Rogan (5249 posts, 85.0% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.875 0.867 0.9 0.536 0.444 0.486 0.235 106.8
bigrams 0.879 0.867 1.4 0.604 0.269 0.372 0.235 58.3
GBGs 0.876 0.867 1.0 0.56 0.309 0.398 0.235 69.4
OSBs 0.881 0.867 1.6 0.658 0.223 0.333 0.235 41.7

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.866 0.846 2.4 0.595 0.401 0.479 0.266 80.1
bigrams 0.873 0.846 3.2 0.712 0.286 0.408 0.266 53.4
GBGs 0.873 0.846 3.2 0.674 0.332 0.445 0.266 67.3
OSBs 0.874 0.846 3.3 0.764 0.259 0.386 0.266 45.1

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.862 0.862 0.0 0.501 0.377 0.43 0.242 77.7
bigrams 0.869 0.862 0.8 0.756 0.074 0.135 0.242 -44.2
GBGs 0.87 0.862 0.9 0.613 0.161 0.255 0.242 5.4
OSBs 0.868 0.862 0.7 0.754 0.059 0.109 0.242 -55.0

Table 4.29: Maximum entropy over posts, trained on one of three transcript types (Waco not included)

Table 4.29 shows the results of the maximum entropy experiments. The experiments trained
with only Rogan and only Taylor produced similar results. Each set of features performed the
same with regards to the rank order of the results for each metric. Both types of experiments
showed stronger precision, than recall. The experiments trained using only the San Diego Police
transcript resulted in the lowest scores accuracy, recall, and F-score. Some precision scores were
higher, but these scores were accompanied by low recall.

4.14.2 Naive Bayes
Table 4.30 contains the results of the naive bayes experiments. The experiments trained with
only Rogan produced their highest F-score using gappy bigrams and their lowest F-score using
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Trained with only Rogan (5249 posts, 85.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.864 0.867 -0.3 0.483 0.378 0.424 0.235 80.4
bigrams 0.839 0.867 -3.2 0.408 0.473 0.438 0.235 86.4
GBGs 0.86 0.867 -0.8 0.476 0.538 0.505 0.235 114.9
OSBs 0.856 0.867 -1.3 0.463 0.519 0.489 0.235 108.1

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.86 0.846 1.7 0.574 0.356 0.439 0.266 65.0
bigrams 0.841 0.846 -0.6 0.48 0.408 0.441 0.266 65.8
GBGs 0.865 0.846 2.2 0.58 0.429 0.493 0.266 85.3
OSBs 0.859 0.846 1.5 0.565 0.357 0.437 0.266 64.3

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.832 0.862 -3.5 0.399 0.442 0.42 0.242 73.6
bigrams 0.803 0.862 -6.8 0.357 0.541 0.43 0.242 77.7
GBGs 0.819 0.862 -5.0 0.395 0.589 0.473 0.242 95.5
OSBs 0.794 0.862 -7.9 0.357 0.622 0.454 0.242 87.6

Table 4.30: Naive bayes over posts, trained on one of three transcript types (Waco not included)

unigrams. The Taylor experiments produced their highest F-score using gappy bigrams and the
lowest F-score using OSBs, followed closely by unigrams. The Taylor experiments showed
stronger precision, than recall (excepting unigrams). The reverse was true for the Rogan exper-
iments with the exception of unigrams. The experiments trained without using the San Diego
Police transcript generally resulted in the lowest scores for each metric across the feature sets.

4.14.3 Support Vector Machine
The results of the SVM experiments are shown in Table 4.31. The trend that experiments
training by leaving out San Diego Police performed the worst continued. The experiments
trained with only Rogan and with only Taylor produced similar results. Each set of features
performed the same with regards to the rank order of the results for accuracy, precision, and
recall.

4.14.4 Effects of Eliminating Waco and Single Transcript Type Training
for Posts

In general, each set of experiments produced increases in precision, recall and F-score, when
compared to the results in section 4.8. The improved scores were more significant for the
Taylor experiments than for the Rogan experiments. The result from this section provided still
further evidence than Waco transcripts are substantially different than the other three types of
transcripts. The better performance of the Taylor experiments leads us to believe that the data
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Trained with only Rogan (5249 posts, 85.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.867 0.867 0.0 0.5 0.438 0.467 0.235 98.7
bigrams 0.872 0.867 0.6 0.529 0.348 0.42 0.235 78.7
GBGs 0.883 0.867 1.8 0.605 0.345 0.439 0.235 86.8
OSBs 0.882 0.867 1.7 0.609 0.32 0.419 0.235 78.3

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.856 0.846 1.2 0.543 0.39 0.454 0.266 70.7
bigrams 0.871 0.846 3.0 0.637 0.369 0.467 0.266 75.6
GBGs 0.875 0.846 3.4 0.673 0.363 0.472 0.266 77.4
OSBs 0.875 0.846 3.4 0.692 0.337 0.454 0.266 70.7

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.839 0.862 -2.7 0.414 0.412 0.413 0.242 70.7
bigrams 0.872 0.862 1.2 0.593 0.221 0.322 0.242 33.1
GBGs 0.874 0.862 1.4 0.608 0.237 0.342 0.242 41.3
OSBs 0.874 0.862 1.4 0.633 0.196 0.3 0.242 24.0

Table 4.31: Support vector machine over posts, trained on one of three transcript types (Waco not included)

in the Taylor transcripts captures a more easily generalized model. The next section presents of
these same experiments, conducted using tiles.

4.15 Leave-One-In over Tiles without Waco
Section 4.13 contains results that continued to validate the hypothesis that no signal was learned
from tiles. In addition, the results presented in section 4.13 eliminate the Waco transcript as a
possible explanation. For the sake of completeness, the leave-one-in experiments described in
section 3.7 were repeated without the Waco transcripts. The results of these experiments are
presented in this section.

4.15.1 Maximum Entropy
Table 4.32 shows the results of the maximum entropy experiments. The experiments trained
with only Rogan and only Taylor produced their highest F-score using OSBs and their lowest
F-score using unigrams. Both sets had stronger recall than precision, with the exception of
unigrams. The experiments trained without using the San Diego Police transcript generally
resulted in the highest F-scores, but this is misleading. These high F-scores were achieved by
calling almost all of the test set persuasive.
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Trained with only Rogan (521 tiles, 51.6% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.503 0.528 -4.7 0.542 0.38 0.447 0.691 -35.3
bigrams 0.524 0.528 -0.8 0.545 0.599 0.571 0.691 -17.4
GBGs 0.491 0.528 -7.0 0.515 0.615 0.56 0.691 -19.0
OSBs 0.507 0.528 -4.0 0.523 0.74 0.613 0.691 -11.3

Trained with only Taylor (664 tiles, 47.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.543 0.513 5.8 0.538 0.432 0.479 0.655 -26.9
bigrams 0.539 0.513 5.1 0.52 0.716 0.602 0.655 -8.1
GBGs 0.529 0.513 3.1 0.511 0.812 0.627 0.655 -4.3
OSBs 0.509 0.513 -0.8 0.498 0.925 0.647 0.655 -1.2

Trained with only SDPolice (78 tiles, 48.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.543 0.51 6.5 0.552 0.541 0.547 0.675 -19.0
bigrams 0.526 0.51 3.1 0.521 0.866 0.65 0.675 -3.7
GBGs 0.54 0.51 5.9 0.529 0.884 0.662 0.675 -1.9
OSBs 0.514 0.51 0.8 0.513 0.942 0.664 0.675 -1.6

Table 4.32: Maximum entropy over tiles, trained on one of three transcript types (Waco not included)

Trained with only Rogan (521 tiles, 51.6% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.485 0.528 -8.1 0.512 0.531 0.521 0.691 -24.6
bigrams 0.522 0.528 -1.1 0.532 0.778 0.632 0.691 -8.5
GBGs 0.522 0.528 -1.1 0.539 0.653 0.591 0.691 -14.5
OSBs 0.527 0.528 -0.2 0.536 0.786 0.637 0.691 -7.8

Trained with only Taylor (664 tiles, 47.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.497 0.513 -3.1 0.491 0.846 0.621 0.655 -5.2
bigrams 0.496 0.513 -3.3 0.491 0.897 0.634 0.655 -3.2
GBGs 0.514 0.513 0.2 0.501 0.836 0.626 0.655 -4.4
OSBs 0.499 0.513 -2.7 0.493 0.966 0.653 0.655 -0.3

Trained with only SDPolice (78 tiles, 48.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.513 0.51 0.6 0.513 0.907 0.655 0.675 -3.0
bigrams 0.505 0.51 -1.0 0.508 0.902 0.65 0.675 -3.7
GBGs 0.527 0.51 3.3 0.521 0.876 0.653 0.675 -3.3
OSBs 0.512 0.51 0.4 0.512 0.927 0.66 0.675 -2.2

Table 4.33: Naive bayes over tiles, trained on one of three transcript types (Waco not included)

4.15.2 Naive Bayes
The results of the naive bayes experiments are shown in Table 4.33. The experiments trained
with only Rogan and with only Taylor produced similar results with regard to F-score. Each set
of features resulted in the same the rank order of F-scores. Both types of experiments showed
stronger recall, than precision. The experiments trained with only using the San Diego Police
transcript resulted in the highest scores for each metric. The experiments trained without using
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the San Diego Police transcript generally resulted in the highest F-scores, but this is misleading.
These high F-scores were achieved by calling almost all of the test set persuasive.

4.15.3 Support Vector Machine

Trained with only Rogan (521 tiles, 51.6% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.553 0.528 4.7 0.575 0.587 0.581 0.691 -15.9
bigrams 0.542 0.528 2.7 0.578 0.492 0.532 0.691 -23.0
GBGs 0.547 0.528 3.6 0.577 0.538 0.557 0.691 -19.4
OSBs 0.536 0.528 1.5 0.57 0.497 0.531 0.691 -23.2

Trained with only Taylor (664 tiles, 47.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.574 0.513 11.9 0.546 0.75 0.632 0.655 -3.5
bigrams 0.578 0.513 12.7 0.558 0.64 0.596 0.655 -9.0
GBGs 0.563 0.513 9.7 0.54 0.688 0.605 0.655 -7.6
OSBs 0.573 0.513 11.7 0.548 0.702 0.616 0.655 -6.0

Trained with only SDPolice (78 tiles, 48.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.51 0.51 0.0 0.51 1.0 0.675 0.675 0.0
bigrams 0.57 0.51 11.8 0.582 0.551 0.566 0.675 -16.1
GBGs 0.572 0.51 12.2 0.574 0.621 0.597 0.675 -11.6
OSBs 0.565 0.51 10.8 0.565 0.637 0.599 0.675 -11.3

Table 4.34: Support vector machine over tiles, trained on one of three transcript types (Waco not included)

The SVM results are shown in Table 4.34. The Taylor experiments outperformed the Rogan
experiments. This was due to similar levels of precision, but increased recall in the Taylor set.
The experiments trained without using the San Diego Police transcript generally resulted in the
highest F-scores, but this is misleading. These high F-scores were achieved by calling almost
all of the test set persuasive.

4.15.4 Effects of Elimimating Waco and Single Transcript Type Training
for Tiles

In general, each set of experiments produced increases in precision, recall and F-score, when
compared to the results in section 4.9. The improved scores were more significant for the Taylor
experiments than for the Rogan experiments. However, these results should not be used as the
basis for any conclusions due to the poor F-scores and the trends shown in previous experiments
over tiles.
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4.16 Majority Voting over Posts
Having explored the extent to which individual machine learning techniques could be used to
detect persuasion, this research investigated the utility of voting schemes using these techniques
collectively. Two separate voting schemes were described in section 3.9. The results of these
experiments over posts appear in this section.

4.16.1 Six-fold Validation
Repetition 1

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.896 0.887 1.0 0.548 0.375 0.442 0.202 118.8
bigrams 0.899 0.887 1.4 0.584 0.32 0.411 0.202 103.5
GBGs 0.897 0.887 1.1 0.57 0.314 0.402 0.202 99.0
OSBs 0.9 0.887 1.5 0.61 0.277 0.379 0.202 87.6

Repetition 2
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.895 0.886 1.0 0.554 0.374 0.444 0.203 118.7
bigrams 0.898 0.886 1.4 0.587 0.333 0.42 0.203 106.9
GBGs 0.895 0.886 1.0 0.563 0.315 0.402 0.203 98.0
OSBs 0.899 0.886 1.5 0.615 0.271 0.374 0.203 84.2

Repetition 3
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.897 0.888 1.0 0.546 0.361 0.431 0.201 114.4
bigrams 0.9 0.888 1.4 0.59 0.333 0.419 0.201 108.5
GBGs 0.899 0.888 1.2 0.579 0.331 0.414 0.201 106.0
OSBs 0.899 0.888 1.2 0.598 0.28 0.374 0.201 86.1

Repetition 4
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.898 0.889 1.0 0.55 0.357 0.432 0.199 117.1
bigrams 0.898 0.889 1.0 0.565 0.303 0.392 0.199 97.0
GBGs 0.898 0.889 1.0 0.565 0.309 0.396 0.199 99.0
OSBs 0.899 0.889 1.1 0.598 0.265 0.363 0.199 82.4

Repetition 5
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.896 0.886 1.1 0.56 0.366 0.442 0.204 116.7
bigrams 0.899 0.886 1.5 0.595 0.321 0.415 0.204 103.4
GBGs 0.9 0.886 1.6 0.609 0.331 0.429 0.204 110.3
OSBs 0.9 0.886 1.6 0.634 0.281 0.388 0.204 90.2

Table 4.35: Majority voting over posts

Table 4.35 shows the results of using the three machine learning techniques to vote for classifi-
cation. Any post that received two or more votes for “persuasion” was classified as persuasive.
There was no significant change in F-score (less than .01) compared to maximum entropy exper-
iments using unigrams (see Table 4.5). Voting experiments for bigrams had changes in F-score
greater than than .01. These improvements in F-score resulted from a universal increase in recall
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across all three feature sets. This increase in recall was accompanied by a increase in precision
for gappy bigrams and OSBs. Bigram voting experiments exhibited a decrease in precision.

In comparison to the naive bayes results in Table 4.6, only one voting experiment improved in
F-score by .01 or more (repetition 3, bigrams). Three unigram voting experiments had less than
a .01 change in F-score (repetitions 1, 2 and 4). All other voting experiments resulted in F-score
decreases of .01 or greater. For all experiments, precision was higher, and recall was lower.

The voting experiments showed a .01 or more increase in F-score for unigrams when compared
to the SVM results in Table 4.7. There was also an increase in F-score of .01 or more for
three of the five experiments using gappy bigrams (repetitions 3, 4, and 5). The increases in
F-score resulted from increases in both recall and precision. All other voting experiments had
F-score changes less than .01. All voting experiments were more precise than the SVM only
experiments. Recall was higher for unigram and gappy bigram voting experiments, but lower
for bigrams and OSBs.

This set of results suggest that a majority voting scheme is an improvement over a maximum
entropy only classifier and a slight improvement over and SVM only classifier. This voting
scheme does not perform as well as a naive bayes only classifier.

4.16.2 Leave-One-Out
Table 4.36 shows that there was no significant change in F-score (less than .01) compared to
maximum entropy experiments using unigrams (see Table 4.11). Leaving out single transcript
types during training for bigrams resulted in F-score changes greater than than .01 across all
leave. These improvements in F-score resulted from an increase in recall with a decrease in
precision. Both the Taylor and the San Diego Police experiments had F-score increases of .01
or more for gappy bigrams, while the Rogan and the Waco F-scores showed no change. The
Rogan, Taylor, and San Diego Police experiments had F-score increases of .01 or more, while
the Waco F-score showed no change.

In comparison to the naive bayes results in Table 4.12, the results of the Rogan voting exper-
iments showed F-score decreased of .01 or more for all feature sets. The Taylor experiments
resulted in F-score decreases of .01 or more for all three types of bigrams with an F-score
increase for unigrams. Using voting, the San Diego Police experiments resulted in F-score in-
creases of .01 or more for unigrams, bigram, and OSBs. Gappy bigrams resulted in a decrease
of 3%. Voting produced a decrease in F-score for all Waco experiments, except unigrams.
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Trained with all, except Rogan (13608 posts, 89.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.866 0.85 1.9 0.598 0.329 0.425 0.262 62.2
bigrams 0.875 0.85 2.9 0.693 0.304 0.422 0.262 61.1
GBGs 0.875 0.85 2.9 0.691 0.304 0.422 0.262 61.1
OSBs 0.873 0.85 2.7 0.731 0.252 0.374 0.262 42.7

Trained with all, except Taylor (11944 posts, 89.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.877 0.872 0.6 0.526 0.367 0.432 0.227 90.3
bigrams 0.883 0.872 1.3 0.601 0.267 0.369 0.227 62.6
GBGs 0.882 0.872 1.1 0.588 0.272 0.372 0.227 63.9
OSBs 0.884 0.872 1.4 0.642 0.215 0.322 0.227 41.9

Trained with all, except SDPolice (18033 posts, 88.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.899 0.826 8.8 0.811 0.546 0.653 0.297 119.9
bigrams 0.911 0.826 10.3 0.897 0.553 0.684 0.297 130.3
GBGs 0.896 0.826 8.5 0.835 0.504 0.628 0.297 111.4
OSBs 0.9 0.826 9.0 0.895 0.482 0.627 0.297 111.1

Trained with all, except Waco (12986 post, 86.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.909 0.937 -3.0 0.288 0.293 0.291 0.119 144.5
bigrams 0.914 0.937 -2.5 0.328 0.347 0.337 0.119 183.2
GBGs 0.906 0.937 -3.3 0.289 0.333 0.31 0.119 160.5
OSBs 0.914 0.937 -2.5 0.309 0.285 0.297 0.119 149.6

Table 4.36: Majority voting over posts, trained on three of four transcript types

The voting experiments showed a .01 or more increase in F-score for unigrams when compared
to the SVM results in Table 4.13, with the exception of the Taylor experiments, which showed no
change. The Rogan experiments resulted in no change when using bigrams and gappy bigrams
with an F-score decrease of more than .02 for OSBs. Bigrams resulted in an F-score change
greater than .01 for the Taylor experiments. The Waco experiments produced F-score increases
of more than 2% for bigrams and gappy bigrams, with no change for OSBs.

This set of results reinforces that a majority voting scheme is an improvement over a maximum
entropy only classifier and that the Waco transcripts are different than the other transcripts.

4.16.3 Leave-One-In
Table 4.37 shows that there was an increase in F-score (greater than .01) compared to maximum
entropy experiments using all three types of bigrams (see Table 4.17). All four experiments
showed no change when using unigrams. When using only the Waco transcripts as training
data, the voting experiments showed no change for bigrams and OSBs and more than a .025
decrease in F-score for gappy bigrams.
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Trained with only Rogan (5249 posts, 85.0% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.889 0.897 -0.9 0.455 0.414 0.434 0.187 132.1
bigrams 0.895 0.897 -0.2 0.481 0.293 0.364 0.187 94.7
GBGs 0.896 0.897 -0.1 0.489 0.336 0.398 0.187 112.8
OSBs 0.901 0.897 0.4 0.533 0.274 0.362 0.187 93.6

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.887 0.891 -0.4 0.477 0.358 0.409 0.197 107.6
bigrams 0.897 0.891 0.7 0.547 0.308 0.394 0.197 100.0
GBGs 0.896 0.891 0.6 0.543 0.324 0.406 0.197 106.1
OSBs 0.899 0.891 0.9 0.576 0.271 0.368 0.197 86.8

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.868 0.887 -2.1 0.41 0.385 0.397 0.204 94.6
bigrams 0.889 0.887 0.2 0.531 0.184 0.273 0.204 33.8
GBGs 0.889 0.887 0.2 0.521 0.233 0.322 0.204 57.8
OSBs 0.891 0.887 0.5 0.566 0.175 0.268 0.204 31.4

Trained with only Waco (5871 posts, 93.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.866 0.86 0.7 0.56 0.194 0.288 0.246 17.1
bigrams 0.867 0.86 0.8 0.734 0.082 0.148 0.246 -39.8
GBGs 0.867 0.86 0.8 0.69 0.087 0.155 0.246 -37.0
OSBs 0.865 0.86 0.6 0.787 0.053 0.099 0.246 -59.8

Table 4.37: Majority voting over posts, trained on one of four transcript types

In comparison to the naive bayes results in Table 4.18, the results of all voting experiments
showed F-score decreased of .01 or more for OSBs. The Rogan, Taylor and San Diego Police
experiments resulted in F-score increases of .01 or more for unigrams and decreases of .01
or more for gappy bigrams. The Waco experiments resulted in the opposite F-score trend, a
decrease for unigrams and an increase gappy bigrams. Bigrams resulted in F-score decreased
for the Rogan and San Diego Police experiments. The Taylor experiment produced an F-score
increase for bigrams, while the Waco experiment produced no change.

The Rogan voting experiments showed an increase in F-score of more than .01 for unigrams,
with no significant changes for all other feature sets, when compared to the SVM results in
Table 4.19. The Taylor experiments resulted in a more than .01 increase in F-score for unigrams
and a more than .01 decrease for OSBs. The results for bigrams and gappy bigrams did not
change significantly. Using bigrams and OSBs for the San Diego Police experiments resulted
in a more than .01 decrease in F-score. Unigrams produced an F-score increase of more than
.01, while gappy bigrams resulted in no significant change. The Waco F-score results were all
more than .01 below the SVM results in Table 4.19.
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The application of majority voting scheme in this set of experiment shows an improvement over
a maximum entropy only classifier and that the Waco transcripts are sufficiently different from
the rest of the corpus.

4.16.4 Leave-One-Out without Waco
Trained with all, except Rogan (7737 posts, 86.7% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.861 0.85 1.3 0.56 0.358 0.437 0.262 66.8
bigrams 0.871 0.85 2.5 0.644 0.315 0.423 0.262 61.5
GBGs 0.871 0.85 2.5 0.636 0.333 0.437 0.262 66.8
OSBs 0.875 0.85 2.9 0.699 0.292 0.412 0.262 57.3

Trained with all, except Taylor (6073 posts, 84.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.874 0.872 0.2 0.508 0.399 0.447 0.227 96.9
bigrams 0.881 0.872 1.0 0.565 0.303 0.394 0.227 73.6
GBGs 0.883 0.872 1.3 0.571 0.344 0.429 0.227 89.0
OSBs 0.884 0.872 1.4 0.605 0.276 0.379 0.227 67.0

Trained with all, except SDPolice (12162 posts, 86.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.9 0.826 9.0 0.788 0.582 0.669 0.297 125.3
bigrams 0.91 0.826 10.2 0.84 0.596 0.697 0.297 134.7
GBGs 0.909 0.826 10.0 0.832 0.596 0.694 0.297 133.7
OSBs 0.902 0.826 9.2 0.86 0.525 0.652 0.297 119.5

Table 4.38: Majority voting over posts, trained on two of three transcript types (Waco not included)

Table 4.38 shows that there was an increase in F-score compared to maximum entropy exper-
iments using all three types of bigrams (see Table 4.23). All increases were greater than .01,
with the exception of the Rogan gappy bigram experiment (.009 change). The San Diego Police
experiment showed no change in F-score when using unigrams. Both the Taylor and Rogan
experiments showed a decrease in F-score of more than .01.

In comparison to the naive bayes results in Table 4.24, there was a decrease in F-score for all
gappy bigram and OSB experiments. Both the Rogan and Taylor experiments resulted in an
increase in F-score, while the San Diego Police experiments resulted in a decrease in F-score.
The San Diego Police experiment posted a increase in F-score for bigrams, while both the
Rogan and the Taylor experiments posted a decrease in F-score.

The Rogan voting experiments showed an increase in F-score of more than .01 for unigrams
with a decrease in F-score for both bigrams and OSBs, when compared to the SVM results in
Table 4.25. Gappy bigrams resulted in no significant change in F-score. The Taylor experiments
resulted in a more than .01 decrease in F-score for bigrams, and no change for all other feature
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sets. Using unigrams and OSBs for the San Diego Police experiments resulted in a more than
.01 increase in F-score. Bigrams produced no change in F-score, while gappy bigrams resulted
in a greater .01 decrease in F-score.

This set of experiments shows an even greater improvement than the experiments in section 4.12.

4.16.5 Leave-One-In without Waco
Trained with only Rogan (5249 posts, 85.0% not persuasive)

Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.875 0.867 0.9 0.537 0.434 0.48 0.235 104.3
bigrams 0.878 0.867 1.3 0.58 0.304 0.399 0.235 69.8
GBGs 0.882 0.867 1.7 0.599 0.343 0.436 0.235 85.5
OSBs 0.885 0.867 2.1 0.654 0.291 0.403 0.235 71.5

Trained with only Taylor (6913 posts, 87.2% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.867 0.846 2.5 0.604 0.389 0.473 0.266 77.8
bigrams 0.876 0.846 3.5 0.707 0.325 0.446 0.266 67.7
GBGs 0.877 0.846 3.7 0.705 0.346 0.464 0.266 74.4
OSBs 0.877 0.846 3.7 0.754 0.294 0.423 0.266 59.0

Trained with only SDPolice (824 posts, 82.9% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.855 0.862 -0.8 0.47 0.394 0.428 0.242 76.9
bigrams 0.873 0.862 1.3 0.64 0.184 0.286 0.242 18.2
GBGs 0.875 0.862 1.5 0.619 0.234 0.34 0.242 40.5
OSBs 0.876 0.862 1.6 0.69 0.18 0.286 0.242 18.2

Table 4.39: Majority voting over posts, trained on one of three transcript types (Waco not included)

Table 4.39 shows that there was an increase in F-score compared to maximum entropy exper-
iments using all three types of bigrams (see Table 4.29). The San Diego Police experiment
showed no change in F-score when using unigrams. Both the Taylor and Rogan experiments
showed a decrease in F-score of more than .01.

In comparison to the naive bayes results in Table 4.30, there was a decrease in F-score for all
three types of bigram experiments, with one exception. The Taylor experiment using bigrams
resulted in no significant change in F-score. When using unigrams as feature, both the Rogan
and Taylor experiments resulted in an increase in F-score, while the San Diego Police experi-
ments showed no change in F-score.

All voting experiments showed an increase in F-score of more than .01 for unigrams with a de-
crease in F-score for both bigrams and OSBs, when compared to the SVM results in Table 4.31.
Gappy bigrams resulted in no significant change in F-score.
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4.17 Single Classifier Voting over Posts
The results in section 4.16 showed that a majority voting scheme could produced better results
than maximum entropy only and SVM only classifiers. A single classifier voting scheme was
presented in section 3.9. This voting scheme was briefly explored, and a selection of the results
of these experiments over posts appear in this section.

Trained will all, except Rogan (7737 posts, 86.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.841 0.85 -1.1 0.473 0.51 0.491 0.262 87.4
bigrams 0.835 0.85 -1.8 0.459 0.546 0.499 0.262 90.5
GBGs 0.856 0.85 0.7 0.517 0.593 0.553 0.262 111.1
OSBs 0.859 0.85 1.1 0.53 0.526 0.528 0.262 101.5

Trained will all, except Taylor (6073 posts, 84.7% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.847 0.872 -2.9 0.425 0.551 0.48 0.227 111.5
bigrams 0.833 0.872 -4.5 0.396 0.58 0.471 0.227 107.5
GBGs 0.842 0.872 -3.4 0.42 0.611 0.498 0.227 119.4
OSBs 0.846 0.872 -3.0 0.425 0.579 0.49 0.227 115.9

Trained will all, except SDPolice (12162 posts, 86.3% not persuasive)
Features Accuracy Baseline Accuracy % Change Precision Recall F-Score Baseline F-score % Change
unigrams 0.9 0.826 9.0 0.711 0.716 0.714 0.297 140.4
bigrams 0.895 0.826 8.4 0.684 0.738 0.71 0.297 139.1
GBGs 0.904 0.826 9.4 0.698 0.787 0.74 0.297 149.2
OSBs 0.899 0.826 8.8 0.719 0.688 0.703 0.297 136.7

Table 4.40: Single Classifier Voting Over Posts,trained on two of three transcript types (Waco not included)

When the results in Table 4.40 are compared to the results in Table 4.38, the most significant
trend is an increase in recall for all experiments. This is an important change due to the fact that
all of the F-scores present in this chapter are primarily driven by recall. Since all three clas-
sifiers exhibited higher precision that recall for post experiments, this voting scheme classifies
the maximum number of posts as persuasive with only a slight decrease in percision. Voting
schemes similar to this should be the focus of future work.

4.18 Conclusion
The results presented in this chapter highlight important information about the feature sets and
the machine learning techniques. The most important conclusion on these results is that machine
learning techniques were able to detect to persuasion, albeit to a limited degree. While several
experiments outperformed the baseline F-score by over 120%, there is substantial room for
improvement.
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The results of the 6-fold validation experiments showed that naive bayes performed well using
gappy bigrams over posts, while maximum entropy and SVM performed better with unigrams.
Contrary to our initial hypothesis, OSBs did not perform significantly better than any of the
other feature sets. However, they often had the highest precision, which indicates that they may
be of use in future reseach as part of a larger, more diverse feature set.

All three methods exhibited low recall and high precision for both types of segmentation. How-
ever, the results presented in this chapter did not give any evidence that TextTiling was a useful
segmentation scheme for these classification tasks. However, this may be primarily attributed
to labeling scheme applied to the tiles (see section 3.4).

Our results also revealed some important information about the transcripts in the corpus. We
learned that the Waco transcripts are substantially different from the other three types of tran-
scripts. Our results suggest that Taylor and Rogan are similar on the post level. Additionally, it
seems that the models learned from using the Taylor transcripts as training data generalize more
easily than the model learned from the Rogan transcripts. Having explored previous and related
work, detailed our experimental design, and presented our results, the last step is to make some
final conclusions and to suggest future work for research in this field.
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CHAPTER 5:
Conclusion

5.1 Summary
This thesis addressed the question, “Can we learn to identify persuasion as as characterized by
Cialdini’s model using traditional machine learning techniques?” As shown below, we answer
this question with a weak “yes.”

In Chapter 2, we presented relevant concepts and previous work that were useful for this re-
search. We described in detail Cialdini’s persuasion model and how it could be applied to ma-
chine learning. We described and identified feature sets that were later used for our experiments.
We presented a suite of metrics needed to evaluate our hypotheses. Finally, we concluded the
chapter with a presentation of software tools that enabled this research.

Having presented all the relevant concepts, features, metrics, and tools, the next task was to
elaborate on our experimental design. In Chapter 3, we presented a description of the data that
was created at the Naval Postgraduate School in the Natural Language Processing Lab. We
detailed the process associated with making the data usable for machine learning, providing a
step-by-step framework for future research using this data. Additionally, we outlined the details
of the experimental setup for each machine learning technique.

Next we reviewed and analyzed the results of our experiments in Chapter 4. Our results revealed
important trends and characteristics about the behavior of our feature sets and machine learning
techniques. The results showed that naive bayes performed well using gappy bigrams over
posts, while maximum entropy and SVM performed better with unigrams. This may be due
to the fact that maximum entropy and support vector machines are discriminative approaches,
while naive bayes is a generative approach. Discriminative models indicate which class is most
similar. For an inter-word distance of 5, OSBs and gappy bigrams may introduce information
that distorts this similarity. The results for tiles were not as encouraging. This suggests that
TextTiling was not a useful segmentation scheme for these classification tasks. This may be due
to the labeling scheme described in section sectTiling.

Our results also revealed that the Waco transcripts are substantially different from the other
three types of transcripts and that the Taylor transcripts and Rogan transcripts are similar on the
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post level. Additionally, the models learned from using the Taylor transcripts as training data
seemed to generalize more easily than models learned from the Rogan transcripts. While most
of our experiments over posts showed an improvement over the baseline F-scores, none of our
experiments resulted in high F-scores that would indicate that this problem has been solved. The
next section provided insight into what future work would be needed to solve this classification
problem.

5.2 Future Work
5.2.1 Data Set Improvements
After conducting this research, it is clear that there is a need for more and larger data sets
annotated for belief. NPS has the only data set of this kind. The results presented in Chapter 4,
showed that one of the four types of transcripts in this corpus is significantly different from
the others. Additionally, this data set is limited to negotiator transcripts. For any real world
applications of persuasion detection, especially DoD and intelligence applications, the item of
interest will not be a negotiation transcript. The items of interest will be Web pages, blogs, SMS
messages, speech recordings, and other media. These data sets may prove more useful as they
will include only features produced by the writers or the speakers.

Since this data set already exists, the next step should be to improve and to expand it. Improve-
ments could include other information about particular posts, such as distance from the previous
persuasive post, correct speaker tags and dialogue act tags, as well as adding more negotiation
transcripts to the corpus.

5.2.2 Feature Set Improvements
This research used only features that are artifacts of the words spoken by the actual negotiation
participants. Using gappy bigrams and OSBs did help in some cases. Future research should
explore the effect on the maximum distance between words and its effect on accuracy and
recall. The experiments in this research only used one type of feature to form the feature sets. It
is possible that combining higher recall features, such as unigrams, and high precision features
such as OSBs may obtain better results.

Future work with improved data sets may include more features such as character bigram and
trigrams. However, there are other directions to explore for features. One approach could be
to build topic models for persuasion. These topics models could then be used in conjunction
with the machine learning techniques used in this research, as well as other machine learning
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techniques. If data sets for SMS and blog existed, it may be possible to use other features, such
as the number of recipients or number of comments posted.

5.2.3 Future Research
There are many areas to pursue for future work. Each machine learning technique presented
has parameters that can be tuned. While the method presented in this research is a reasonable
first attempt, there are more sophisticated methods available. This research has also questioned
the usefulness of texttiling for dialogues. It is possible that tiles could be useful given a better
labeling scheme, such as using the most common post label within the tile. Another approach
might separate the two sides of the negotiation and then apply TextTiling in conjunction with
an improved labeling scheme.

Improved persuasion detection on the post level may prove difficult because posts are often short
and their length in the corpus varies considerably, similar to other tasks using chat messages
and SMS. Methods for better segmentation or normalization for length should be explored and
applied to this data set. Another possibility is to conduct research investigating human subject
agreement on tagging the beginning and the end of a persuasive section of a conversation. These
sections could then be used for machine learning experiments.

Since negotiations are a series of turns, future work should included using Markov chain model,
which take sequence and time into account. At the beginning of a negotiation, the hostage taker
usually tries to secure as many demands as possible. The responding agency negotiator typically
does not give into these demands at the outset. As time passes, a hostage taker may be willing
to settle for a subset of his demands, where as a hostage negotiator will ask for larger and larger
concessions. One of the more common types of persuasion in a hostage negotiation is commit-
ment and consistency, which requires a offer-accept-enforce sequence. These characteristics all
reinforce that time and sequence play a part in the presence of persuasive.

While this research explored voting as a possible means to improve the results of the exper-
iments, further research should explore the utility of bagging and boosting. This exploration
should include some of the weak classifiers in this thesis, as well as new classifiers that may
result from future work in this area. In this research, F-score was affected primarily by low
recall. If it is possible to find classifiers that have high recall, but do not result to labeling the
entire test set as one class, these could be cascaded or chained with some of the higher precision
classifiers in this research. In addition, this research only explored voting within a feature set.
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Other possibilities could include expanded voting schemes that use the same machine learning
method but combine the votes across features or that use different machine learning methods
but combine the votes across features.

The experiments described in Chapter 3 did not take speaker into account when making predic-
tions. It may be possible to build generative models that account for speaker when making a
prediction. Since both sides of a negotiation are talking about the same topic, it is likely that
they will use the same set of words or the same types of words. However, each side has its own
goal. Consequently, it might be the case that features that are indicative of persuasion for one
side of the conversation, may not be for the other.

This research did not use not account for parts of speech or syntax. It may be the case that
the part of speech or syntax structure for persuasion is distinctly different from non-persuasive
portions of a conversation. If this is the case, then there will be different parts of speech and
parse trees that will indicated the class. Modals, such as “should” and “ought,” could be one part
of speech that may have an important role in persuasion detection. Once the binary classification
task has been solved, the next task will be to identify a particular type of persuasion.

5.3 Concluding Remarks
Persuasion detection has proved to be a difficult problem. Within the Department of Defense
and the intelligence community, there is a need to know when persuasion is happening. There
are two scenarios where this is important. One is where our enemies are trying to influence
friendly or neutral parties to act against the United States. In this scenario, persuasion detection
enables us know that someone means do us harm and the audience that they are trying target.
With this information, we now would have the ability to respond in an appropriate and timely
manner. The second scenario where this is important is in learning the persuasion model of
another culture. If we could detect persuasion in other languages, then we could learn how the
dominant group is influencing the local populace. The lessons that we have learned in Iraq and
Afghanistan, have taught us that culture is important. In both of these wars, the population is the
center of gravity for both sides. The populace is often targeted with radio, television, and print
media. With a model of their persuasion techniques, we would now be able to conduct effective
and targeted information and psychological operations to sway the populace in support of our
forces. Given these two scenarios, persuasion detection should continue to be a focus of DoD
and intelligence research.
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